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Abstract

Alignment models have been more prominent in the statistical (SMT) rather than the
example-based machine translation (EBMT) research tradition. Word alignment is one
of the oldest concepts in machine translation, and it is now readily available thanks to
statistical tools. However, since real translations are rarely word-by-word, word align-
ment usually makes use of two linguistically unreasonable concepts: empty cepts and
distortion. In this thesis, we develop a two-phase EBMT approach on the basis of a
two-dimensional word alignment model. This approach avoids alignment to the empty
cept and does not make use of distortion.

In two-phase (or precompiled) EBMT, translation examples are converted into trans-
lation rules during the preprocessing phase. However, since the sentence to be translated
is not known at this stage, preprocessing must be sensitive, as it entails a great risk of
losing valuable information. In order to enable a more informed matching, translation
rules must remain representative of the original example translation. Such a translation
rule we call translation frame, and its major task is to capture the structural discrep-
ancies in the sentence pair. We propose to generate translation frames on the basis of
a two-dimensional alignment model. In addition to the usual word translations – which
we call inter-sentential dependencies – this alignment model contains intra-sentential
dependencies, which model relations between words within the source and target sen-
tences. In addition to the usual direct alignment between two words, this also enables
indirect alignment of untranslatable words via an intra-sentential dependency to a di-
rectly aligned word. Discontiguous phrases are thus aligned in two steps: First, we align
their translatable words, and then we associate their untranslatable words. Our transla-
tion frame generation method includes all words in the translation frame that take part
in indirect alignment.

We implement a prototype system, which only relies on resources that are very easy
to obtain: intra-sentential dependencies are computed from correlations between words,
and inter-sentential dependencies are established by using single-word translations. We
detailedly show how the prototype can deal with a real-corpus example, and compare its
performance to two EBMT approaches of comparable simplicity (runtime and compiled).
While in these experiments the protype’s performance is at the same level as the baseline
system’s, our approach has the following advantages: The two-dimensional alignment
model can exclusively rely on relationships between single words, in particular single-
word translations, which are easier obtained than phrase translations. At the same time,
it does not enforce translatability for every word in the sentence, but offers a treatment
for untranslatable words that does not align them to the empty cept. Thirdly, intra- and
inter-sentential dependencies can be computed independently of one another. Finally,
alignments can be computed without distortion models or restrictions on word order,
because EBMT needs them exclusively for the analysis of existing translation examples,
not for generating new translations.
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1 Corpus-Based Approaches to
Machine Translation

Figure 1.1: The “translation pyramid” for RBMT.

For decades, machine translation (MT) has been dominated by the so-called rule-
based approach (RBMT), which relies on a (rich) translation lexicon and hand-crafted
transfer rules. As shown in Figure 1.1, one distinguishes between three variations of
RBMT (Collins, 1998):

Direct translation: Transfer rules operate directly on the source and target sentence.
Relying heavily on the lexicon, this approach mostly performs word-for-word or
phrase-to-phrase and is thus very restricted in its ability to cover structural dis-
crepancies between source and target sentence.

Translation based on transfer: The transfer rules operate at one level of abstraction,
translating an intermediate representation of the source sentence to an intermedi-
ate representation of the target sentence. Such representations typically contain
syntactic and semantic information about the sentence.
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1 Corpus-Based Approaches to Machine Translation

The interlingua approach: The interlingua is a universal representation of sentence
meanings, such that it acts as a mediator between source and target language,
making transfer superfluous.

While the direct approach has only a limited ability, the transfer approach requires a
full linguistic analysis of source and target sentence, and the interlingua approach even
requires a language-independent sentence representation. In other words:

“RBMT systems have been biased toward syntactic, semantic, and contex-
tual analysis, which consumes considerable computing time. However, such
deep analysis is not always necessary or useful for translation.” (Sumita &
Iida, 1991)

Obviously, “formulating linguistic rules for RBMT is a difficult job and requires a lin-
guistically trained staff” (Sumita & Iida, 1991). However, the main problem of the
RBMT approach is a knowledge-acquisition bottleneck :

“the team of developers first has to fully understand the problem before it
can be described in terms of rules (or their exceptions)” (Carl & Way, 2003).

According to Sumita and Iida (1991) it can be questioned if linguistics (ever) deals with
all phenomena encountered in real text. Indeed, there is still a number of complex
problems in MT that are “not (yet) sufficiently understood”, or require “a full semantic
and pragmatic analysis of the corpus, which is rarely available” (Carl & Way, 2003). As
a result, RBMT systems “have a kind of inherent contradiction in themselves” (Nagao,
1984):

“The more elaborate the RBMT becomes, the less expandable it is. Consid-
erably complex rules concerning semantics, context, and the real world, are
required in machine translation. This is the notorious AI bottleneck: not
only is it difficult to add a new rule to the database of rules that are mu-
tually dependent, but it is also difficult to build such a rule database itself.
Moreover, computation using this huge and complex rule database is so slow
that it forces a developer to abandon efforts to improve the system. RBMT
is not easily upgraded.” (Sumita & Iida, 1991)

At the same time, it has been questioned if RBMT is the best approach to translation,
because

“man does not translate simple sentences by doing a deep linguistic analysis”
(Nagao, 1984).

Fortunately, the availability of computational power, electronic parallel corpora,
machine-readable bilingual dictionaries, and statistical algorithms has opened the door
to a new approach: Corpus-based (or data-driven) machine translation. In this approach,
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Figure 1.2: Illustration of the idiosyncratic gap (IG) (Nitta, 1986): The semantic difference between
a sentence and its literal translation (LT). In contrast to a free translation (FT), a
literal translation preserves “the wording, phrasing and various sentential structures of
the original (source) sentence as much as possible” (Nitta, 1986). According to Nitta
(1986) the idiosyncratic gap between two languages, e.g. English (E) and Japanese (J),
should be “examined” by comparing the free translations’s literal (back) translation with
the original sentence.

the bottleneck is avoided by having translation knowledge extracted automatically from
translation corpora, rather than crafted by humans. While RBMT is still widely used
in commercial applications (Koehn, 2004; Ziegler, 2008), “most MT research being un-
dertaken today is corpus-based” (Way & Gough, 2005).

Beyond pure translation memories (TM), corpus-based MT does not merely locate
relevant examples but – based on these – attempts a fully automatic translation (Somers,
1999). Thus, the task of corpus-based MT is not to simply ’remember’ known solutions
of former problems but to create new solutions to new problems (Carl, 1998). A par-
ticular challenge is constituted by structural discrepancies between source and target
language, which together make up the idiosyncratic gap between the two languages (see
Figure 1.2). Some of these discrepancies simply stem from the fact that the same linguis-
tic categories are realised differently in different languages. As an example, consider the
difference in word-order between SVO-languages (English, Chinese) and SOV-languages
(Japanese, Turkish), or prepositions and postpositions, etc. Further, there are (sys-
tematic) divergences inherent in the languages, many of which are described by Dorr
(1994). Finally, (less systematic) differences stem from rewording, clause-reordering, etc.
The less closely source and target language are related, the wider the idiosyncratic gap
between them. In particular, rephrasing phenomena will be more frequent, as a literal
translation might distort the original meaning of the sentence. In addition, corpus-based
MT must work with real translation data, which may contain a freer translation even if
a literal variation would also be valid.

Corpus based MT has been launched in two different approaches, Example-based
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1 Corpus-Based Approaches to Machine Translation

Figure 1.3: Illustration of Shannon’s noisy channel and its application to translation from French
to English: The French source sentence f is regarded as a corrupted observation of
the English sentence e. The task of translating a sentence f consists in reversing
the channel operations, which according to the model have caused the corruption of e
(decoding). The channel operations of Brown et al. (1990)’s word-based SMT approach
are: word movement, word duplication and word translation.

machine translation (EBMT) and Statistical machine translation (SMT). Since it is
widely believed that the future of MT lies in a synthesis of both approaches (Groves &
Way, 2005), we present them in turn: SMT in Section 1.1 and EBMT in Section 1.2.

1.1 Statistical Machine Translation (SMT)

SMT is the most “dominant” paradigm in today’s research (Way & Gough, 2005). It
applies Shannon’s noisy channel to the problem of machine translation. As Weaver
(1949) puts it:

“A book written in Chinese is simply a book written in English which was
coded into the ’Chinese code’ ” (Weaver, 1949)

Brown et al. (1990) provide a statistical formalisation:

“Given a sentence T in the target language, we seek the sentence S from
which the translator produced T”.(Brown et al., 1990)

Note that the noisy channel view results in a switch of source and target language, which
we will indicate by a subscript “channel”. More specifically, Brown et al. (1990) seek
the sentence Ŝchannel that maximises the conditional probability P (Schannel|Tchannel). In
line with the view of Weaver (1949), this process is called decoding. As by the Bayes

theorem P (S|T ) is equivalent to P (S)P (T |S)
P (T )

:

Ŝchannel = arg max
Schannel

P (Schannel|Tchannel)

= arg max
Schannel

P (Schannel)P (Tchannel|Schannel)

P (Tchannel)
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1.1 Statistical Machine Translation (SMT)

Due to the maximisation the denominator can be dropped, so Brown et al. (1990) derive
the following decoder equation:

Ŝchannel = arg max
Schannel

P (Schannel)P (Tchannel|Schannel)

The resulting equation is viewed as divided into

1. a language model P (Schannel) and

2. a translation model P (Tchannel|Schannel).

The SMT view of the translation pyramid is shown in Figure 1.4. Switching back from
the channel view to a translator’s view, P (Schannel) is actually a target language model.
To clarify, the decoder equation for translating from French (f) to English (e) is:

ê = argmaxeP (e|f) = argmaxeP (e)P (f |e)

The advantage of modelling the translation process indirectly via the Bayes rule, rather
than estimating P (e|f) directly, is that it causes the decoder equation to depend on a
target language model P (e), which “concentrate[s] its probability as much as possible on
well-formed English strings” (Brown, Cocke, Pietra, Pietra, & Mercer, 1993).1 Brown
et al. (1993) describe how the translation model and the language model “cooperate”:

“The translation model probability is large for English strings, whether well-
or ill-formed, that have the necessary words in them in roughly the right
places to explain the French. The language model probability is large for
well-formed English strings regardless of their connection to the French. To-
gether, they produce a large probability for well-formed English strings that
account well for the French. We cannot achieve this simply by reversing our
translation models.”

However, since there is no way to estimate P (e) or P (f |e) directly, it is necessary to
construct an approximation of their distributions. According to Brown et al. (1993), this
is “the essential question for statistical translation” – and it turned out it has remained
so until today.

The target language model P (e) is typically estimated by means of an n-gram lan-
guage model. For example, Brown et al. (1990) use a second order Markov model,
“bucketing” the words in the sentence into groups of 3:

P (w1, ..., wn) = P (w1)P (w2|w1)
n∏

i=3

P (wi|wi−1, wi−2)

Since, according to the Markov assumption, the probability of a word ei is independent
of all words preceding it at a distance greater than 3, without additional grammatical
information the model will not capture long-distance dependencies.

1This approach has been largely adopted in SMT. A notable exception is the alignment template model
by Och and Ney (2004), who use a log-linear approach that is “a generalisation” of the noisy channel
approach, but thereby “easier to extend”.
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1 Corpus-Based Approaches to Machine Translation

Figure 1.4: The “translation pyramid” adapted to SMT (Brown et al., 1992).

Figure 1.5: Example of a word-to-word alignment (Brown et al., 1990).
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1.1 Statistical Machine Translation (SMT)

The translation model P (f |e) is based upon the following theory about the transla-
tion process (Brown, Pietra, Jelinek, Mercer, & Roossin, 1988), (Brown, Cocke, et al.,
1988):

1. Partition the source text into a set of fixed locutions.

2. Use a glossary plus contextual information to select the corresponding set of fixed
locutions in the target language.

3. Arrange the words of the target fixed locutions into a sequence forming the target
sentence.

Thus, the translation model’s task is to capture the translation of source locutions into
the target language, as well as changes in word-order. Brown et al. (1990) suggest
to model translation on the basis of alignments, regarding the translation probability
P (f |e) as the sum of the probabilities of all possible alignments of the two sentences:

P (f |e) =
∑
a

P (f, a|e)

According to Brown et al. (1990), an alignment is a mapping between the source and
target sentence, which indicates the origin in the target sentence of all the words in the
source sentence (see Figure 1.5 for an example). Conceptually, one can separate the
alignment model from the lexical model, which indicates the probability by which one
locution is translated into another. Changes in word order between source and target
language are captured by the alignment model’s reordering component.

The complexity of reordering crucially determines the complexity of the search prob-
lem of SMT (arbitrary word ordering is NP complete). Brown et al. (1993) use Dempster,
Laird, and Rubin (1977)’s Expectation Maximisation (EM) algorithm2 to extract the
parameters from a translation corpus. Generally, the search space of (more complex)
alignment models is too big to be searched exhaustively.

1.1.1 Word-based SMT

Avoiding step 1, the partitioning into fixed locutions, Brown et al. (1990)’s translation
model is based on word alignment. Here, the source sentence is regarded as generated
from the target sentence word by word. The disadvantage is that at most one target word
can be aligned with each source word. The number of source words generated from a
target word Brown et al. (1990) model by means of fertility probabilities f(ei). Brown
et al. (1990)’s reordering component consists of a distortion model d(i, j|l). Thus, the
probability of d is dependent on the relative positions of the source and target words (j
and i) and the target sentence length l (Brown et al., 1990). Brown et al. (1993) present
four different word-based translation models, whose alignment models are of increasing
complexity, which are often referred to as “the IBM models”.

2Although this is not indicated in (Brown et al., 1993).
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1 Corpus-Based Approaches to Machine Translation

Figure 1.6: Example of a sentence pair that cannot be aligned word-by-word (Brown et al., 1993).

Unfortunately, word alignment is inadequate even for translation between closely
related languages such as French and English:

“We have serious problems in sentences in which the translation of certain
source words depends on the translation of other source words. For example,
the translation model produces aller from to go by producing aller from go
and nothing from to. Intuitively we feel that to go functions as a unit to
produce aller.” (Brown et al., 1990)

Moreover, the exact alignment of the individual words within phrase translations is often
impossible to determine even for humans (see Figure 1.6).

Another “prime deficiency” of Brown et al. (1993)’s approach is the reordering com-
ponent (Fox, 2002). The distortion model is linguistically uninformed as it “pays little
attention to context and none at all to the higher-level syntactic structures” (Fox, 2002).
For illustration, consider the following analogy:

“to make a comparison with clothes, to localise what corresponds to the left
shoulder of a shirt on, say, a jacket, one does not take material from the left
shoulder of the shirt, unweave it, weave it back again in a different way, and
then patch it somewhere on the jacket. (Lepage & Denoual, 2005a)”

As a matter of fact, structural differences between languages increase the search-space
along all parameters. For example, as shown in Figure 1.7 the language pair Japanese-
English has considerable differences in word-order. As a consequence, beam search
decoders are often stuck in sub-optimal solutions, when applied on structurally different
language pairs, such as Japanese-English (Watanabe & Sumita, 2003). In a large-scale
experiment on the language pair French-English, word-based SMT proved quite “able
to select the right target words”, but in contrast “there is little prospect of getting these
in the right order” (Way & Gough, 2005).

14



1.1 Statistical Machine Translation (SMT)

Figure 1.7: Word-by-word alignment for an example sentence pair Japanese-English: Discrepancies
in word-order enlarge the search space (Watanabe & Sumita, 2003).

1.1.2 Phrase-based SMT

Figure 1.8: Example of phrase-based alignment (Koehn, 2004).

In contrast to word alignment, phrase alignment does not align individual words, but
“groups of words in the source language that function as a unit in translation”(Brown et
al., 1990) (see Figure 1.8). This is motivated by a phenomenon called phrasal cohesion
that has been observed since the very beginning of statistical machine translation:

“Words form phrases in the target sentence that are translations of phrases
in the source sentence and that the target words in these phrases will tend to
stay together even if the phrase itself is moved around” (Brown et al., 1990).

In phrase-based translation, the input sentence S is thus segmented into phrases si, as
basic unit of translation. Notably, these phrases are sequences of consecutive words
(Koehn, Och, & Marcu, 2003), which means they “can be any substring and not neces-
sarily phrases in any syntactic theory” (Chiang, 2005). Since the lexical model as well as
the reordering component work at phrase level, the phrases are translated and reordered
as a whole. For example, Koehn (2004) performs reordering of the translated phrases
into the target language according to some distortion model d. Further, a cost factor
ω larger than 1 biases towards longer translation phrases. Thus, the translation model
P (S|T ) is decomposed into

P (sI
1|tI1) = ΠI

i=1φ(si|ti)d(ai − bi−1)

and the overall decoder equation (Koehn, 2004):

Tbest = argmaxTP (T |S) = argmaxTP (S|T )P (T )ωlength(T )

15



1 Corpus-Based Approaches to Machine Translation

Figure 1.9: Illustration of bidirectional alignments and their intersection (Koehn, 2004).

Figure 1.10: Phrase segmentation based on word alignment in the alignment template approach
(Och & Ney, 2004).
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1.1 Statistical Machine Translation (SMT)

Phrase translations can be learned directly in Marcu and Wong (2002)’s joint prob-
ability model, or extracted from bi-directional word alignments (Och & Ney, 2004).
If phrases are extracted, the alignment quality can be improved if word alignment
is performed bi-directionally (see Figure 1.9): The union of both alignments yields a
high-coverage low-precision alignment, while the intersection gives a low-coverage high-
precision alignment. As shown in Figure 1.10, Och and Ney (2004) then extract all
phrases that are consistent with the word alignment, i.e. all words must be aligned ex-
clusively to words within the phrase (Och & Ney, 2004). After extraction, the probability
of the phrase translations can be estimated by relative frequency (Koehn et al., 2003).
Koehn et al. (2003) compare the two methods experimentally, and find that phrase ex-
traction based on word alignment yields a slightly higher BLEU score in translation.
Och and Ney (2004) claim that it is also easier to implement than the joint model.

Phrase-based SMT relies on the cohesion of contiguous phrases (sequences of words)
during translation (Fox, 2002). If a phrase is common enough to have been observed
in training data (as direct match), it can be robustly translated without needing to be
reconstructed (Quirk & Menezes, 2006). Thus, phrases provide a local context, which –
depending on the phrase length – can contain word reorderings (“yellow house – maison
jaune”), fixed expressions (“kicked the bucket – starb”), word deletions/insertions (“to
school – in die Schule”) as well as lexical disambiguation (“la maison – the house”,
not “le maison”, even though “le–the” might be more frequent). Thus, in contrast to
word-based SMT, phrase-based SMT can robustly translate such phenomena, as long as
they are sensitive to the local context provided by the phrase. Hence, it is unsurprising
that the translation quality is “considerably better” than that obtained by word-based
models (Groves & Way, 2005).

While the move from words to phrases as the basic unit is a major advancement,
the expressive power of phrase alignment is still limited by its constraint to contiguous
phrases:

“If a consecutive phrase in one language is translated into two or three non-
consecutive phrases in the other language, there is no corresponding bilingual
phrase pair learned by this approach.” (Och & Ney, 2004)

Simard et al. (2005) describe the use of non-contiguous phrases at the example of the
following English-French translation pair:

(1.1) “Mary switches her table lamp off → Mary éteind sa lampe de chevet”

In French, the verb “switch” can be translated as “allumer” (to switch on) as well as
“éteindre” (to switch off). Word-based alignment would have a 50-50 bet to get the
verb-translation right, as it aligns “off” to the empty word ε. Phrase-based translation
could only do better if it happened to have learned the whole phrase containing the
discontiguous phrase, i.e.

(1.2) “switches her table lamp off – éteind sa lampe de chevet”

17



1 Corpus-Based Approaches to Machine Translation

The contribution of discontiguous phrases to translation performance has been shown
by Bod (2007). The fact that neither Och and Ney (2004) nor Marcu and Wong (2002)
manage to extract non-contiguous phrases does not mean that these models were not
capable of extracting discontiguous cases in principle. Rather, in practice this causes
the alignment model to become too large and noisy. Indeed, according to Simard et
al. (2005), non-contiguous phrases cause the number of extractable sentences to grow
exponentially with the sentence size, while it only grows quadratically with exclusively
contiguous phrases. Unfortunately, the number of extracted phrases has a “direct im-
pact” on the computation time of a translation (Simard et al., 2005). Thus, the main
challenge consists in finding those phrases that are most beneficial for translation. Then,
the remaining problem consists in reordering these discontiguous phrases.

Figure 1.11: The combination of discontiguous phrases in phrase-based SMT (Simard et al., 2005).

As context-sensitivity in phrase-based SMT is restricted to the local context provided
by the phrases, there is no convincing strategy for the global reordering of the phrases
(Quirk & Menezes, 2006). Koehn et al. (2003)’s distortion models are essentially the
same as Brown et al. (1990)’s, in that reordering exclusively depends on the relative
positions of the source and target phrases in the sentence. Thus, the only potential
advantage would stem from the fact that changes in word-order are modelled above the
phrase level, rather than the word level. However, according to Quirk and Menezes
(2006) the resulting reduction of the search space is not significant, as exhaustive search
is still impractical for most sentences. Further, since phrases are non-constituents, they
do not provide a basis for linguistic generalisation to capture structural discrepancies
(Quirk & Menezes, 2006). Under these circumstances, it seems questionable, if changes
in phrase-order can reflect structural discrepancies between source and target language.
Further, the phrases tend to be rather small (e.g. “up to three words” according to Koehn
et al. (2003)), and hence cannot be expected to contain much syntactic information
within the local context. We conclude that phrase-based models lack a representation
of syntactic information almost as much as the poorer word-based models.

18



1.1 Statistical Machine Translation (SMT)

1.1.3 Syntax-based SMT

Figure 1.12: Syntax in SMT (Ahmed & Hanneman, 2006).

Syntax-based SMT aims at modelling structural or syntactic aspects of language
within a statistical framework.

“Adding syntax back to the translation process is not an innovation, rather
it is just fall back to an old standard practice in human-intensive machine
translation systems. However, the main breakthrough here is that no human
labor is required beyond those efforts already investigated to build monolin-
gual syntactical parsers.” (Ahmed & Hanneman, 2006)

This approach potentially offers two advantages over phrase-based SMT, namely to
model a) syntactically motivated constraints on word order and b) long-distance depen-
dencies between non-contiguous phrases (Huang & Knight, 2006).

Within the source-channel SMT model, syntactic information can be incorporated in
the target language model as well as the translation model. Firstly, the target language
model can be enhanced with target language syntax. For example, the n-gram model
can be replaced by a syntactic parser. The probability of a target sentence is then
calculated as the sum of the probabilities of all its parse trees. Charniak, Knight, and
Yamada (2003) show that this can improve the grammaticality of the target sentences

19



1 Corpus-Based Approaches to Machine Translation

as well as the translation accuracy. However, this includes syntax merely in a post-hoc
reranking process, not at the core of translation (Way & Gough, 2005).

Secondly, the translation model can be enhanced with target as well as source syntax
(see also Figure 1.12). Yamada and Knight (2001) incorporate source language syntax, as
they translate an input tree into an output string. Such a string-to-tree translation model
is computationally similar to a parsing model. As shown in Figure 1.13, Yamada and
Knight (2001)’s channel operations are: reordering child nodes, inserting extra words at
each node, and translating leaf words on each node of the parse tree. Cowan, Kucerova,
and Collins (2006) also incorporate the parse tree of the target language. Such a tree-
to-tree translation model maps parse trees in the source language to parse trees in the
target language. This has two potential advantages: improved output grammaticality
by modelling the syntax of the target language and a detailed model of correspondences
between the parse trees of the source and the target sentence.

Figure 1.13: Translation of a source tree into a target string (Yamada & Knight, 2001).

Unfortunately, parsing models (having been developed to capture dependencies within
a single language) cannot be expected to automatically reveal translation correspon-
dences across languages (Tinsley, Hearne, & Way, 2007). Identical parsing schemes will
not produce parse-tree isomorphism (bi-directional one-to-one mapping of the nodes)
when applied to different languages. This makes it more difficult to e.g. employ syntac-
tically motivated constraints. For example, straightforward experiments limiting phrase-
based SMT models to learning syntactically motivated phrases have led to a decrease
in performance (Koehn et al., 2003). While this might largely be the result of a severe
reduction of overall phrase quantity, the fact that not all potentially useful phrase-pairs
are syntactic constituents cannot be ignored: e.g. “there is – es gibt – il y a”, “I will – ich
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Figure 1.14: Phrase alignment crossing due to negation (Fox, 2002).

werde – je vais”, etc. As another example, Yamada and Knight (2001) restrict the order-
ing of the target language words based on syntactic information of the source language
upon child reordering (see Figure 1.13). This means that all children of the nodes in
the source syntax tree can be reordered before they are translated independently. How-
ever, it turned out that child reordering cannot capture all structural discrepancies to be
found in manual word-alignments on French-English (Fox, 2002) – and more problems
are to be expected with less closely related language pairs. For example, as shown in
Figure 1.14, child reordering cannot handle the correct word order for negation. Rather,
a language-dependent solution would be required to cover systematic structural discrep-
ancies. Generally, there are two ways to overcome this problem: a) a more sophisticated
method to extract the information required for translation, and b) reforming the syntax-
model such that information about correlations across languages is more accessible in
the first place.

For example, Cowan et al. (2006) extract aligned extended projections for each source
clause. More specifically, they align every source clause with a slightly modified repre-
sentation of the extended projection of its translation in the target sentence. As shown
in Figure 1.15, an extended projection is a syntactic structure that contains a selected
subset of the words in the original sentence: a single content word and at least one
function word that is associated with the content word. Cowan et al. (2006) focus on
verb-clauses, whose associated function words include modal verbs and wh-words, and –
as in the example in Figure 1.15 – auxiliaries (e.g. has) and complementisers (e.g. that).
In contrast, all NPs and PPs occurring in the phrases are generalised over. Aligned
extended projections are extracted automatically based upon word alignment of NPs
and PPs (extracted from statistical word alignment) and the clause structure provided
by the parser. For translation, the source sentence is first broken down into clauses,
which are translated individually on the basis of the most probable extended projection
and then recombined to form the output sentence.

The reliance on syntactic deep-processing can also be regarded as a disadvantage,
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1 Corpus-Based Approaches to Machine Translation

Figure 1.15: The extended production of the clause “that the main obstacle has been the pre-
dictable resistance of manufacturers” (Cowan et al., 2006).

as robust syntactic parsers are not always available and parsing errors are an additional
source for misperformance. This may be an additional reason why such syntax-based ap-
proaches have so far not produced systems that can compete with phrase-based systems
in large-scale translation tasks (Chiang, 2007). Recently, new approaches have emerged
that no longer rely on linguistic annotation, but only make use of the formal machinery
of syntax without any linguistic commitment. Strictly speaking, such systems are for-
mally syntax-based but not linguistically syntax-based because they do not make use of
any syntactic theory (Chiang, 2005).

Synchronous context-free grammars (SCFG) are one example of a grammar formal-
ism that specifies relationships between two languages. It is similar to CFG, but gener-
ates pairs of related strings instead of single strings. For example, the correspondence
between a SVO and and a SOV language can be captured by the following rules:

(1.3) S → [(NP VP), (NP VP)]

(1.4) VP → [(V NP), (NP V)]

Unfortunately, there is a scalability issue with SCFGs as (in contrast to CFGs) they
cannot always be converted to Chomsky normal form, which is why they do not have a
practical implementation yet (Ahmed & Hanneman, 2006).

To learn these synchronous grammars, one needs to model the joint prob-
ability of the source and target languages – that is p(e, f) – using hidden
variables to account for the missing bitree. An EM algorithm is then used
to estimate the required parameters. However this involves a costly E-Step
during which the bilingual text is parsed in (n6) in most formalisms using a
variant of the inside-outside algorithm used in monolingual statistical parsers.
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Therefore, to scale these systems one needs to impose certain restrictions on
the grammar expressiveness to avoid the costly E-Step.

Figure 1.16: Extraction of hierarchical phrases(Chiang, 2007)

Chiang (2005) uses a restricted form of SCFG to extract hierarchical phrases, i.e.
phrases which contain generalisations of subphrases. These phrases thus add another
hierarchical level on top of phrase-based SMT. Being discontiguous, the scopes of hi-
erarchical phrases are larger than that of conventional phrases. Further, they specify
the reordering of the sub-phrases within their scope. This makes them more powerful
than conventional phrases. As shown in Figure 1.16, hierarchical phrases are induced
heuristically from phrase-aligned bitext without linguistic annotation. According to
Chiang (2007), hierarchical phrase-based translation is “the first system employing a
grammar (to our knowledge) to perform better than phrase-based systems in large-scale
evaluation”.

1.2 Example-Based Machine Translation (EBMT)

According to Sato and Nagao (1990) “the basic idea of example-based translation is very
simple: translate a source sentence by imitating the translation example of a similar
sentence in the database”. This paradigm has been first proposed by Nagao (1984) who
was inspired by the “mechanism of human translation”:

“Man does the translation, first, by properly decomposing an input sentence
into certain fragmental phrases (very often, into case frame units), then,
by translating these fragmental phrases into other language phrases, and
finally by properly composing these fragmental translations into one long
sentence. The translation of each fragmental phrase will be done by the
analogy translation principle with proper examples as its reference.” (Nagao,
1984).
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Figure 1.17: Translation pyramid adapted to EBMT (Somers, 1999). While the matching and
recombination stages are “very similar”, even in terms available of implementation
techniques, relating “direct match” to “exact match” is more controversial: “In one
sense, the two are alike in that they entail the least analysis; but in another sense,
since the exact match represents a perfect representation, requiring no adaptation at
all, one could locate it at the top of the pyramid instead” (Somers, 1999).

This statement reflects the three main components of an EBMT system (Somers, 1999):

1. Matching the input sentence against the example base.

2. Transferring fragments of the input sentence into the target language.3

3. Re-combining the target language fragments into the target sentence.

Nagao (1984)’s aim was to develop a translation system “based on the fundamental
function of language processing in the human brain”. Indeed, the concept of EBMT is
very similar to human translation, assuming that a translator will also recognise if she
has translated a similar sentence before, and then use this as a role model for the new
translation (Collins & Cunningham, 1996). However, the original basis for EBMT had
been Nagao (1984)’s view on foreign language learning :

3As in Figure 1.17, the transfer phase is often referred to as “alignment”. However, there is an
important difference between alignment in EBMT and SMT: EBMT alignment is based on the
comparison of two sentences, namely the translation example and input sentence. Accordingly,
EBMT does not have to align every word in the senence, but only those words (or phrases) which
make up the difference between input and example sentence.
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“A student memorises the elementary English sentences with the correspond-
ing Japanese sentences. The first stage is completely a drill of memorising lots
of similar sentences and words in English, and the corresponding Japanese.
Here we have no translation theory at all to give to the student. He has
to get the translation mechanism through his own instinct. He has to com-
pare several different English sentences with the corresponding Japanese. He
has to guess, make inferences about the structure of sentences from a lot of
examples.” (Nagao, 1984)

Likewise, an EBMT system must be able to recognise similarities and differences be-
tween translation examples. Information about the structure of the sentences as well
as correspondences between words can then be extracted by the replacement operation
illustrated in Figure 1.18. If two examples differ by exactly one source and target word,
respectively, these new words can be recognised as a new translation pair. Moreover, if
such information is already available, the system will be able to translate a new input
sentence by modifying the example translation. For example, the system can translate
the sentence “A man eats vegetables.” on the basis of an example translation of the
sentence “He eats potatoes.”, given that it already knows how to translate “a man”,
“he”, “vegetables” and “potatoes”.

Figure 1.18: Illustration of the replacement operation (Nagao, 1984).

According to Lepage and Denoual (2005b) “the difficulty which is usually faced
in translating between some particular languages partly vanishes (at least in theory!)”
in consequence of this view. EBMT may thus bridge the idiosyncratic gap between
structurally different languages (see Figure 1.2), without the need of a global translation
model:

“In contrast to some other approaches to machine translation, namely statis-
tical machine translation, which do not view linguistic data as specific data,
we believe that natural language tasks are specific because their data are
specific.” (Lepage & Denoual, 2005b)
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Indeed, EBMT has first been applied on structurally different languages and proposed
for particular linguistic phenomena regarded as too difficult for the rule-based approach
(Sumita & Iida, 1991).

From the machine-learning perspective, EBMT can be regarded as an instance of
case-based reasoning (CBR), which has originally been developed as an alternative for
rule-based expert systems:

“Instead of rules, CBR represents expertise in the form of past ‘cases’, and
new problems are solved by finding the most similar case in the case-base, and
using this as a model for the new solution through a process of ‘adaptation’.”
(Somers, 2001)

According to Somers (2001), there is a strong parallel between EBMT and CBR. In
particular, both approaches attempt to avoid the knowledge acquisition bottleneck by
means of an intuitive problem solving approach based on human problem solving. Fur-
ther, CBR cases just as EBMT examples can be regarded as “very specific rules” which
only apply to distinct situations (Somers, 2001). Accordingly, they share the problem
that a case base may contain overlaps in the form of either mutually reinforcing or
conflicting examples (Somers, 1999).

Another problem in EBMT is that the replacement operation will not automatically
produce correct translations if applied on any translation pair and input sentence:

“The snag is that even though it may be trivial to adapt an example to suit
the new problem at hand, this does not guarantee that the corresponding
changes can be propagated across to the target language solution.” (Collins
& Cunningham, 1997)

Even if the replaced words are translated correctly, the sentence may be syntactically
or semantically incorrect after recombination. This problem is called boundary friction
and can be caused by syntactic as well as semantic discrepancies between source and
target language. As an example, consider the translation of “He eats a banana.” on the
basis of the example “He eats a sandwich.” into German. If we simply replace the word
“sandwich” by “banana”, this will result in a violation of German gender agreement, as
the change of syntactic gender from neutral to feminine also requires a change of the
determiner (“ein Sandwich” but “eine Banane”). Similarly, a sentence like “Elephants
eat bananas.” would require a change of the verb (“fressen” instead of “essen”), due to
the subtle semantic difference of the agent (animal instead of human) which is reflected
in German but not in English. Thus, the application of the replacement operation must
be restricted to suitable example translations for a given input sentence.

The selection of suitable example translations from the example base is called re-
trieval and is usually performed on the basis of a similarity metric comparing input
sentence and example source. Nagao (1984) specifies the following two criteria:

1. The input sentence must be syntactically similar to the example source.
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2. Those words that are replaced during the modification of the example sentence
must actually be replaceable.

For the latter Nagao (1984) proposes to use a thesaurus, such that words are only
replaced by near synonyms:

“The replaceability of the corresponding words is tested by tracing the the-
saurus relations. If the replaceability for every word is sufficiently sure, then
the translation sentence of the example sentence is changed by replacing the
words to the translation words of the input sentence.” (Nagao, 1984)

Recently, a great variety of different EBMT techniques have been developed.

“Within EBMT there is [...] a plethora of different methods, a multiplic-
ity of techniques, many of which derive from other approaches: methods
used in RBMT systems, methods found in SMT, some techniques used with
translation memories (TM), etc. (Hutchins, 2005).

Lepage and Denoual (2005a) claim to have built “the purest ever” EBMT-system, be-
cause

“it strictly does not make any use of variables, templates or training, does not
have any explicit transfer component, and does not require any preprocessing
of the aligned examples” (Lepage & Denoual, 2005a).

However, this is exactly what many other (potentially less “pure”) EBMT-systems make
use of.

According to Somers (1999) major differences between EBMT systems manifest in
the example base. In order to avoid overlapping (and in particular conflicting) examples,
some approaches filter the example base, or even construct it manually, while others
rely on a similarity metric to reduce the number of matches (Somers, 1999). There
have also been efforts to combine several retrieved translation examples (Sato & Nagao,
1990). Translation examples are usually stored at sentence level, or a smaller grain
size. They may be stored as plain strings (Lepage & Denoual, 2005b), or enhanced with
linguistic annotation (Carl, 1999), or even tree structure (Sato & Nagao, 1990). As
illustrated in Figure 1.19, this additional information can be used for abstraction of the
actual translation examples. However, according to Carl and Hansen (1999), there is a
trade-off between coverage and reliability:

“the more an MT system is able to decompose and generalise the translation
sentences, translate parts or single words of it and to recompose it into a
target language sentence, the broader is its coverage and the more it loses
translation precision” (Carl & Hansen, 1999)
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As illustrated in Figure 1.20, a translation system that employs a low level of abstraction
and a coarse granularity of the matching fragments will achieve the highest reliability.
However, such a system will be in trouble when faced with an input sentence that is
different from those sentences in the training data:

“To attain a certain degree of creativity, an appropriate degree of abstraction,
and an appropriate degree of decomposition is required” (Carl, 1998).

Figure 1.19: Abstraction in EBMT (Collins & Cunningham, 1996). TLA and SLA are the ab-
stracted representations of the translation example TL and SL. SL’ is the input sen-
tence to be translated to TL’. A good translation example should be similar to SL’,
but more importantly its abstraction SLA must be similar to SLA’.

Figure 1.20: Trade-off between coverage and reliability (Carl, 1998): A high degree of abstraction
and fine decomposition granularity leads to a high coverage (upper left). A low degree
of abstraction and coarse granularity leads to a high reliability (lower right).

The way the examples are stored in the example-base has a great influence on the
matching phase, as different storing methods allow for different similarity measures.
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Structural matching of trees is computationally more complex than string-based match-
ing against the source side of a template. Moreover, since the template already specifies
the translation of the remainder of the sentence and the word order, the translation
process mainly consists of translating those phrases that match on the variables of the
template (Kaji, Kida, & Morimoto, 1992). In string-based matching, computational
resources can be saved if whole words rather than individual characters are taken as the
smallest unit (word-based matching). Corresponding pieces below the word level can
only be detected by the more expensive character-based matching. Lepage and Denoual
(2005a) show that translation correspondences can be distributed over the entire string
of the translated sentence, as in:

(1.5) “Atraversó el ŕıo flotando – It floated across the river.”

In practice, the best method depends on the language pair. For example, highly inflecting
or agglutinative languages particularly benefit from morphologic annotation.

In the following two sections, we contrast the so-called “pure” approach with “two-
phase EBMT”, which divides the overall process into a preprocessing and a translation
phase.

1.2.1 “Pure” EBMT

Figure 1.21: Two proportional analogies that correspond in English and French (Lepage & Denoual,
2005a).

Lepage and Denoual (2005a) claim to have built “the purest EBMT system ever”:
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“Our system definitely positions itself in the EBMT stream, however it de-
parts from it in one important aspect: it does not make any use of explicit
symbolic knowledge such as templates with variables, and it does not pro-
duce any template either. Direct use of bicorpus data in their raw form is
made, without any preprocessing.” (Lepage & Denoual, 2005b).

The translation system relies entirely on a “specific operation” called proportional anal-
ogy which reflect the (Saussurian) systematicity of language by exhibiting commutations
of sentence fragments:

“The human interpretation of proportional analogies between sentences is
that some pieces of the sentences commute with other pieces, so that human
beings perceive it as a kind of parallel replacement.” (Lepage & Denoual,
2005b)

For example: “I’d like to open a window.” is to the sentence “Could you open a
window?”, as the sentence “I’d like to cash these traveller’s checks.” is to the sentence
“Could you cash a traveller check?”. According to Lepage and Denoual (2005a)

“any sentence in any language may be cast into a wide number of such
proportional analogies that form a kind of meshwork around it” (Lepage &
Denoual, 2005b).

However, for the purpose of machine translation, only those analogies which are corre-
sponding in source and target language can be used. Figure 1.21 shows an example of
such a corresponding analogy in English and French. In order to translate a new input
sentence, an analogical equation is formed, the resolution of which yields the translation
of the input sentence. For example, in order to translate the sentence “Could you cash
these traveller checks?”, the following analogical equation could be formed:

English: I’d like to open these windows. : Could you open a window? :: I’d like to cash
these traveller’s checks. : x

⇒ x = Could you cash a traveller’s check?

French: Est-ce que ces fenêtres, là, je peux les ouvrir ? : Est-ce que vous pouvez
m’ouvrir une fenêtre ? :: Ces chèques de voyage, là, je peux les échanger ? : x

⇒ x = Vous pouvez m’échanger un chèque de voyage ?

Figure 1.22 sketches a Prolog implementation of this translation algorithm. An impor-
tant feature of the analogy solving algorithm (Lepage, 1998) is character-based rather
than word-based processing:
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“Approaches that adopt the word as the unit of processing neglect the fact
that corresponding pieces of information in different languages are indeed
distributed over the entire strings and do not necessarily correspond to com-
plete words.” (Lepage & Denoual, 2005b)

Unfortunately, this also brings about a high complexity of the translation algorithm.
However, since the complexity is “basically quadratic in the size of the examples” it can
be reduced by means of “on-the-fly” selection of the example pairs (Lepage & Denoual,
2005b).

Figure 1.22: Prolog implementation of the algorithm for translation (Denoual, 2006).

The overall performance of the system is comparable to that of word-based SMT
(Denoual, 2006)4. However, the system’s low coverage (less than 0.5 in the experiments in
(Lepage, 2005)) poses a serious problem. According to Lepage and Denoual (2005b), this
cannot be attributed to their underlying assumptions that analogies of form correspond
to analogies of meaning, which seems basically confirmed5. Rather,

“the chance that a sentence will be translated depends crucially on the rele-
vance of the examples covering the domain of the sentences to be translated”
(Lepage, 2005).

4“Ses performances sont comparables en termes de mesures BLEU et NIST, à celles d’un système
statistique utilisant un modèle IBM4 fonctionnant sur les mots (sans les phrases)” (Denoual, 2006).

5As experiments showed, the proportion of analogies of forms which are not analogies of meaning
(less than 4%) seems “too small to seriously endanger the quality of the results obtained during
translation.” (Lepage & Denoual, 2005b) (see Figure 1.23 for an example)
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For example, in the experiments reported in (Lepage & Denoual, 2005b), the sys-
tem formed on average “between half a million and one million analogical equations
(687, 641)” to translate one sentence, but it can solve only 28% of these successfully.

Nevertheless, “pure EBMT” constitutes an interesting alternative to SMT, because
it implements the principle of lazy processing (Lepage & Denoual, 2005b). While SMT
performs eager offline learning during the preprocessing phase, this approach does not
have any preprocessing phase:

“There is simply no preprocessing phase because the bicorpus is merely
loaded into memory as is before its use in translation, so the preprocess-
ing phase is at a cost of zero!” (Lepage, 2005)

Further, the system even increases its performance during translation (online learning),
as it adds newly discovered translation pairs to the database (see Figure 1.22). In
particular, all alignment information (below the sentence level) is left implicit until
needed:

“the choice of a correct translation is really left to an implicit use of the
structure of the target language, and does not imply any explicit transfer
processing” (Lepage & Denoual, 2005b)

This approach offers a great flexibilxity in dealing with the specific characteristics of
previously unseen input data and at the same time may avoid a great amount of unneeded
processing. While in SMT the burden of computation is unequally balanced towards
the preprocessing phase rather than the translation phase, this approach balances it
(even more unequally) the other way (Lepage, 2005). However, in practice an expensive
preprocessing phase (which must only be performed once) is probably the lesser of the
two evils if the alternative leads to long translation times.

Figure 1.23: An analogy of form that is not an analogy of meaning (Lepage & Denoual, 2005b).

1.2.2 Two-Phase EBMT

Two-phase EBMT divides the overall process into a learning and a translation phase
(see Figure 1.24). The learning phase consists of preprocessing of the raw translation
examples, or – in other words – extracting a translation grammar from the raw example
base. During the translation phase, an abstract example from the translation grammar
is re-instanted with elements from the input sentence. According to Carl (2001), recent
developments in EBMT show a trend towards two-phase EBMT:
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Figure 1.24: Two-Phases EBMT (Kaji et al., 1992).

The advantage of translation grammars is 1) that they can be induced offline
thus reducing computation time in the working-phase of the system and 2)
that consistency of the alignments can be checked and handled more easily.
(Carl, 2001)

The translation grammar often consists of translation templates. Such a template
is obtained by generalisation over some of the words in the source and target sentence.
These words will then be replaced by variables, which will typically be aligned. In
addition, the variables can also be typed so as to retain (part of) the linguistic information
of the replaced string. For example, the sentence pair

(1.6) John loves Mary → John liebt Mary

could be generized as follows:

(1.7) (...) loves (...). → (...) liebt (...)

After alignment, the template would be:

(1.8) X loves Y → X liebt Y

A typed template couldm retain POS-information:

(1.9) X<NP> loves Y<NP> → X<NP> liebt Y<NP>
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Cicekli (2005) have shown that type constraints reduce the amount of incorrect transla-
tions produced by the application of templates in unrelated contexts. Typed translation
templates enable a unified treatment of various kinds of translation knowledge (Kaji et
al., 1992)

The individual rules of a translation grammar resemble translation rules in RBMT,
except that they are extracted automatically and thus tend to have fewer constraints
(McTait, 2001). The degree of resemblance is higher in approaches that heavily rely on
linguistic resources and lower in so-called language-neutral approaches. Templates have
been induced from translation examples annotated with parse trees (Kaji et al., 1992) or
linguistic bracketing (Carl, 2001). In language neutral approaches, templates have been
computed from the comparison of pairs of translation samples (Cicekli & Güvenir, 2001),
or induced from individual examples based on word co-occurrence information (McTait,
2001). In the remainder of this section, we take a closer look at these language-neutral
approaches.

Cicekli and Güvenir (2001) propose two template learning algorithms, one general-
ising over the similarities and the other over the differences of two translation examples.
Similarity translation template learning (STTL) is essentially an application of Nagao
(1984)’s replacement operation, as similar parts of two source sentences are assumed
to correspond to each other. Differences translation template learning (DTTL) can be
regarded as its complement, as here different parts of two source sentences are assumed
to correspond, given that the remainder parts are similar (or can be aligned through
additional information of lexical translation). Cicekli and Güvenir (2001) use a morpho-
logical analysis, in particular to be able to deal with the agglutinative source language
Turkish. For example, the following pair of examples contains exactly one similarity
(underlined):

(1.10) I break+PAST the window → pencere+ACC kir+PAST+1SG

(1.11) You break+PAST the door → kapi+ACC kir+PAST+2SG

From this, DTTL can thus learn the following templates:

(1.12) break+PAST the → +ACC kir+PAST

(1.13) I X1 window → pencere X1 +1SG

(1.14) You X1 door → kapi X1 +2SG

Additional templates can be learned by STTL, provided that one of the two differences
in the string are already known to be translations of each other. For example, if it is
known that “I” corresponds to “1SG” and “you” corresponds to “2SG”, the following
templates can be learned:

(1.15) window → pencere
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(1.16) door → kapi

(1.17) X1 break+PAST the X2 → X2 +ACC kir+PAST X1

As shown in this example, translation templates can contain lexical translations as well
as grammatical correspondences.

Rather than using the comparison of two translation examples, McTait (2001) in-
duces translation templates from individual examples making use of word co-occurrence
information. McTait (2001)’s focus is on generating translation templates capturing
discontiguous phrases such as shown in Figure 1.25:

“Few, if any, of the existing approaches cater for the fact that translation
phenomena are not always bijective and that translation relations of a nature
other than 1:1 exist” (McTait, 2001)

In order to achieve this, template generation involves two phases even before the align-
ment of variables and words: a monolingual and a bilingual phase. During the monolin-
gual phase, words that are occurring in the same sentence (at least twice) are combined
to collocations. More specifically, McTait (2001) builds up trees of collocations with
increasing lengths and decreasing frequencies. During the bilingual phase, two colloca-
tions are regarded as translations of each other, if they have occurred in exactly the
same sentence pairs. The longest collocation is selected from target and source tree that
fulfils this criterion. Similar as in (Cicekli & Güvenir, 2001), templates are generated
from the extracted information in two ways: The first kind of template is generated by
replacing all words belonging to the extracted collocation with a variable. For exam-
ple, the template in Figure 1.25 could be generated from the following two translation
examples:

(1.18) The commission gave the plan up. → La commission abandonna le plan.

(1.19) Our government gave all laws up. → Notre gouvernement abandonna toutes les
lois.

The second kind of template is the complement of the first, as here all other words are
replaced. In the example, the resulting rules are thus

(1.20) The commission (...) the plan (...). → La commission (...) le plan.

(1.21) Our government (...) all laws (...). → Notre gouvernement (...) toutes les lois.

Both methods extract two kinds of templates that seem useful for translation: The
first kind of template represents a phrase translation, in particular templates 1.15 and
1.16. The second kind of template contains discontiguous phrases (see Figure 1.25),
or structural information as in templates 1.12 and 1.17. Given structural information
for translation is not easy to obtain, the second kind of template seems most valuable
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Figure 1.25: A translation template representing a discontiguous phrase (McTait, 2001)

for translation. Finally, both methods also produce templates, such as 1.13, 1.14, 1.20,
1.21, which combine the translation information of seemingly unrelated phrases. Unfor-
tunately, such unrelated phrases may be unlikely to cooccur in a new input sentence.
Without further processing, the actual benefit for translation of this third kind of tem-
plate seems questionable. The problem is, that they are not representative of the original
example’s sentence structure.

1.3 Comparing SMT and EBMT

In this section, we make an attempt to compare the two approaches to MT. Before
discussing strengths and weaknesses in Section 1.3.2, we first need to discuss their dis-
tinction in Section 1.3.1.

1.3.1 Distinction

The distinction between EBMT and SMT has become a controversial issue recently:

“Initially, differences between SMT and EBMT were distinct: SMT input
was decomposed into individual SL words and TL words were extracted
by frequency data (in the ‘translation model’), while in EBMT input was
decomposed into SL fragments and TL examples (in the form of correspond-
ing fragments) were extracted from the database. More recent develop-
ments of ‘phrase-based’ and ‘syntax-based’ SMT models have blurred these
distinctions.”(Hutchins, 2005)

More specifically, EBMT systems have started to integrate statistical operators, and
SMT systems have made use of complex representations (Carl, 2006). As a consequence,

“it is a fact that it is harder than it has ever been to describe the differences
between the two methods” (Way & Gough, 2005).

According to Hutchins (2005), it is hard to draw a line
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1. between syntax-based SMT approaches and EBMT approaches using syntactic
structures to represent the translation examples (Hutchins, 2005).

2. between phrase-based SMT and EBMT in general (Hutchins, 2005).

As Carl (2006) points out, it is even harder to make a systematic distinction between the
use of templates in EBMT (Kaji et al., 1992) and hierarchical phrases in SMT (Chiang,
2005). Nevertheless, many attempts have been made to make this distinction.

To begin with, Somers (1999) observes that statistical systems do not store the
examples directly, but in terms of precomputed statistical parameters extracted from
the overall corpus. The examples themselves are only stored “inasmuch as they occur in
the corpus on which the system is based” (Somers, 1999). This has severe consequences
for the matching and recombination phase, which in SMT “are implemented in quite
a different way” compared to typical EBMT systems (Somers, 1999). Thus, there is a
difference concerning the kind of information extracted from the corpus, “and how this
is brought to bear in dealing with the new input” (Way & Gough, 2005).

According to Turcato and Popowich (2001), an EBMT system is a translation sys-
tem that treats the bilingual corpus as a genuine repository of knowledge that “could not
be stored in other forms”. This means that an EBMT-system must extract knowledge
from the corpus that is only available at runtime. In contrast, SMT systems access the
corpus during the preprocessing phase. However, according to Turcato and Popowich
(2001)’s criterion, only Nagao (1984)’s translation by analogy “stands out as truly ex-
ample based”. According to Carl (2006), this does not reflect the actual situation:

we have run-time and compilation-time SMT systems, and we have run-time
and compilation-time EBMT systems, which lets us conclude that the dis-
tinction run-time versus compilation-time is probably an important detail of
the system architecture, but one which does not distinguish major processing
paradigm (Carl, 2006)

Hutchins (2005) sees the main difference between SMT and EBMT in their imple-
mentation of the core process of a MT-system which converts the elements of the input
sentence into “equivalent elements” of the target language:

“MT systems are EBMT systems if the core ‘transfer’ (or SL-TL conversion)
process involves the matching of SL fragments (sentences, phrases, strings)
from an input text, the matching of such fragments against a database of
bilingual example texts (in the form of strings, templates, tree representa-
tions), and the extraction of equivalent TL fragments (as partial potential
translations).” (Hutchins, 2005)

However, Carl (2006) also refutes this definition:

we cannot draw a meaningful distinction between methods being used in
EBMT and methods being used in SMT
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As an example, he compares (Kaji et al., 1992) and (Chiang, 2005):

“While the representations are virtually identical, Kaji et al. (1992) refer to
their approach as ‘example-based’ and Chiang (2005) calls his ‘statistical’.”’
(Carl, 2006)

Carl (2006)’s conclusion sheds new light on the EBMT-SMT debate:

“it is not so much the technical details which distinguishes SMT from EBMT
and one system from another. [...] it is mainly due to divergences of the
common values which has fragmented the scientific community and which
has also been at the core of the putative differences in SMT and EBMT.”

In particular, EBMT and SMT researchers have traditionally pursued different objec-
tives :

“while designers of SMT systems seek to optimise an average statistical trans-
lation quality, measured on a set of random sentences, followers of EBMT
seem to be more interested in increasing the accuracy of the generalisation
and reproduction capacities of the example systems” (Carl, 2006)

Further, Carl (2006) regards the issue from the point of view of system theory by Luh-
mann. In this version of system theory, systems may reproduce itself at “points of
re-entry”, thereby making use of connectivity operators. Regarding translation exam-
ples as linguistic systems, he concludes:

“EBMT has focussed on the properties of structures suited for translation
and the design of their re-entry points, and SMT develops connectivity oper-
ators which select the most likely continuations of structures.” (Carl, 2006)

In other words, EBMT aims to be structure preserving, as it stores the examples’ sentence
structures implicitly in the examples without modifying them more than necessary. In
contrast, for SMT there is a need to decompose the sentence into pieces at least so small
that their occurrence is frequent enough for observation in the training data. This leads
to a destruction of the sentence structure, which then has to be reconstructed by the
statistical model.

In our view, Carl (2006)’s distinction still does not provide a clear classification of
real translation systems. The reason for this is that, in practice, EBMT systems also
need to work with fragments that have a chance to re-occur in the corpus. And SMT
systems have started to increase their fragment size from words to phrases to hierarchical
phrases – the latter being hardly distinguishable from translation templates. In sum,
SMT and EBMT can be regarded as two lines of research traditions, which already have
begun to cross and merge. Strictly speaking, many of the recent translation systems are
already a synthesis of the two approaches, although this is rarely acknowledged. The
most prominent example for this is (Chiang, 2005), which can also be termed “example-
based” if the hierarchical phrases are regarded as (pre-processed) translation examples.
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1.3.2 Performance

The actual performance of EBMT and SMT systems has rarely been measured in direct
comparison. In fact, Way and Gough (2005)’s and Groves and Way (2005)’s large-scale
evaluations on the language pair English-French might be the only ones that have ever
been published. Both compare the performance of an EBMT-system to an SMT system
given a large amount of training data is available. Way and Gough (2005) use a word-
based SMT system, and Groves and Way (2005) a phrase-based SMT system. As to the
word-based system, it turned out that the relative performance of the two methods was
crucially dependent on the translation direction: While for French to English translation,
the SMT system clearly outperformed the EBMT-system, the outcome was reversed for
English to French (Way & Gough, 2005). As to the phrase-based system, the best
performance was achieved by a hybrid system seeded with all data induced by statistics
and the EBMT system (Groves & Way, 2005). Admittedly, these experiments are a
comparison of two specific translation systems rather than SMT and EBMT in general.
However, they make clear that at the current state of the art, neither approach can be
regarded as principally superior to the other.

However, both approaches have their strengths and weaknesses. Traditionally, the
following properties have been attributed: Firstly, the minimum amount of training data
required for building an SMT system is larger than for EBMT systems (Way & Gough,
2005). Secondly, EBMT is better at dealing with close matches and SMT with remote
matches:

“If a sentence to be translated or a very similar one can be found in the
TMEM6, an EBMT system has a good chance of producing a good transla-
tion. However, if the sentence to be translated has no close matches in the
TMEM, then an EBMT system is less likely to succeed. In contrast, an SMT
system may be able to produce perfect translations even when the sentence
given as input does not resemble any sentence from the training corpus. How-
ever, such a system may be unable to generate translations that use idioms
and phrases that reflect long-distance dependencies and contexts, which are
usually not captured by current translation models.” (Marcu, 2001)

In our view, the major strenght of the EBMT approach is its distributed information
management: Information about structural discrepancies are stored implicitly in the
translation examples. Accordingly, EBMT can build syntax at its core (Way & Gough,
2005) without the need of an explicit syntactic translation model. However, pure EBMT
has long translation times.

The strength of precompiled EBMT is that during the preprocessing phase extra
operations can take place without leading to longer translation times. Unfortunately,
preprocessing always entails the risk of losing valuable information. Since the sentence

6translation memory = example base

39



1 Corpus-Based Approaches to Machine Translation

to be translated is an unknown factor during the preprocessing stage, preprocessing can
at best make a probabilistic distinction between important and unimportant parts of
an example translation. A synthesis of EBMT and SMT should thus maintain the dis-
tributed information representation, and incorporate statistical preprocessing methods.
We will take this idea further in Chapter 3. First, we present the implementation of our
EBMT-system in Chapter 2.
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In this thesis, we do not aim at building a state-of-the-art performing system. Since
we need to set up a system from scratch, such an objective would be highly unreal-
istic. Moreover, the performance of any corpus-based translation system is crucially
dependent on the amount of bilingual data available, and our resources are limited.
Rather, we aim to build a framework for experiments with different EBMT transla-
tion methods. This allows to examine specific aspects of the translation process, and
compare the performance and the effect of different methodical variations. Accordingly,
our system comprises a runtime as well as compiled EBMT approach. We pursue a
language-independent approach where a bilingual lexicon is the most important trans-
lation resource. If the translation system returns several translations, we take them
all. We assume that the best translation among them can be selected by a monolingual
language model. We present the implementation of the translation system in Section
2.1 and a basic evaluation of the translation performance in Section 2.2.

2.1 Implementation

Since we pursue a language independent approach, our system will be based on shallow
processing. Deep linguistic processing is avoided, as robust parsers are only available
for a limited number of languages. In contrast, bilingual dictionaries are available for
almost any language pair. Our system thus employs the following translation resources:

1. a sentence-aligned bilingual corpus

2. a lexicon containing phrase and word translations.

We implement two competing methods of EBMT: a runtime translation appraoch as
well as a compiled translation approach. Figure 2.1 illustrates the overall system.

Both translation methods follow the classical EBMT procedure (see also Chapter 1):
The translation of the input sentence is derived from an analogous translation example.
The overall translation process consists of the following phases: During matching the
most similar translation example(s) are retrieved, then each of these matched sentences
is analysed before the translation can be generated by means of recombination. Our
method generates an individual set of translations from each of the matched sentences.

We will compare a runtime approach which relies on unprocessed translation exam-
ples, and a compiled approach which employs a translation grammar. As described in
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Figure 2.1: The architecture of our EBMT system. The runtime translation method is an instance
of “pure” EBMT in the sense that it uses raw translation examples (corpus) and a
lexicon. The compiled translation method is an instance of two-phase EBMT because it
uses precompiled translation rules instead of the raw corpus. However, both approaches
use the corpus to disambiguate the lexicon lookup of phrases contained simultaneously
in the input sentence and the example source (see Section 2.1.1).

Chapter 1, the compiled approach makes use of a previously extracted translation gram-
mar consisting of translation templates. In contrast, the runtime approach is exclusively
based on the comparison between input and matched sentence, generating an (implicit)
template “on the fly”.

We describe the runtime approach in Section 2.1.2 and the compiled approach in
Section 2.1.3. Both approaches heavily rely on the lexicon, which we describe in Sec-
tion 2.1.1.

2.1.1 Lexicon

We aimed at building a lexicon that contains translations of words and contiguous
phrases. Lexica are an important translation resource, and their great advantage is that
they can be obtained easily for virtually any language pair. Since bilingual dictionaries
are a wide-spread linguistic resource, one can expect that at least one digital dictionary
is available for almost any language pair. However, linguistic resources are not the only
source for a lexicon, as word and phrase translations can also be automatically extracted
from bilingual corpora. Both lexicon sources have advantages and disadvantages: While
hand-collected dictionaries are more reliable, they only contain one standard form of
each word. Thus, they can only be fully exploited in combination with (error-prone)
morphologic processing. Extracted word and phrase translations may not be as reliable,
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but they contain different word forms. Moreover, they are automatically tuned to the
text type of the text from which they have been extracted.

In our implementation, we combine both lexicon sources. More specifically, we
combine freely available online dictionaries with a statistically extracted phrase table.
In addition, we use and even give preference to the translation contained in the retrieved
translation example. With so many sources combined, a lexicon lookup typically yields
a set of translations rather than a single translation. If a phrase occurs simultaneously
in the input sentence as well as in the source sentence of the translation example, we
make use of this fact to disambiguate the translation. More specifically, if at least one
of the translations we obtain from the lexicon lookup occurs in the example’s target
sentence, we filter out all translations that do not occur in the example. Finally, if
no other translation is available, we take the original word, as this is usually the right
translation for a proper noun.

We describe the dictionaries in Section 2.1.1 and the phrase table in Section 2.1.1.

The Dictionary

After a brief search of the web, we decided to use two online dictionaries: Woxikon
(http://www.woxikon.com/) and Ectaco (http://www.ectaco.co.uk/). These two dic-
tionaries are freely available, provide the language pair English-Dutch, and can be read
out automatically with relatively little effort. They are general-purpose dictionaries
(i.e. not for any specific domain).

Together, these dictionaries provide a large number of translations for single words,
but hardly contain any phrase translations. We have tried to enhance the dictionaries
with phrase lookup by the following algorithm:

1. Look up each word in the phrase individually.

2. Return concatenations of the all retrieved translation alternatives.

However, this (naive) implementation could not be run, because the resulting number
of combinations was too large to be handled by our computational resources.

As any freely available online dictionary, our dictionaries have been constructed for
human rather than computer use. Accordingly, they have the following shortcomings:

1. The dictionaries are generally unable to deal with any form of inflexion (in partic-
ular verb forms or plural forms of nouns).

2. The dictionaries often contain either none at all, or many different translations for
function words.

3. General-purpose dictionaries are not tuned to our corpus’ domain.

In order to make up for the shortcomings, we combine the dictionary with a phrase table
extracted from the corpus.
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The Phrase Table

Being extracted from the corpus, the phrase table is perfectly tuned to our domain and
contains many (and sometimes exclusively) inflected word forms. We first describe how
the phrase table is compiled from the corpus, and then how it is used for translation.

Compilation The small size of our corpus turns the task of automatically extracting
a reliable knowledge source from a corpus into a challenge. We collected the phrase
table as follows: First, we performed word alignment using GIZA++ (Och & Ney,
2000) in both translation directions. We then took the intersection of the bi-directional
alignment in order to achieve the best precision possible. As the resulting alignment was
still unsatisfactory, we then extracted only non-crossing 1-to-1 aligned word-sequences.
This conservative alignment extraction method seems suited for our small corpus, as it
yields phrase translations of a reasonable quality.

Lookup Since the extracted phrases are all 1-to-1 aligned, they are not only phrase
translations but at the same time also contain word translations. However, we found that
the word translations are not precise enough. Instead, we implemented three different
lookup mechanisms for our phrase table (in order of their computational complexity):

Exact match lookup: The phrase table’s least expensive lookup method is that of the
phrase taken as a whole, but it will only succeed if the phrase table contains a
source phrase that is an exact match of the input phrase.

Sub-phrases lookup: Since all phrases in the phrase table are 1-one-1 aligned, we can
also lookup phrases (or even words) that are subphrases of the original phrase
table entry.

Divided lookup: This method consists of dividing the phrase into n subphrases and
looking up each of them individually, thereby taking all possible boundary positions
into account. Due to its costs, we only apply this lookup method to variable
sequences, i.e. if the number of subphrases n is known in advance.

2.1.2 Runtime EBMT

In the runtime approach, the central element is the comparison between example and
input sentence. In this section, we first introduce all phases of the basic runtime EBMT
algorithm individually, before going through an example translation. A sequence di-
agram is to be found in Figure 2.2. Then, we describe two extensions of the basic
algorithm, namely cutting the matched sentence and phrase enlargement.
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Figure 2.2: Sequence diagram for runtime approach.

Matching As similarity metric, we count the number of words the example sentence
has in common with the input sentence. The set of matched sentences consists of those
example translations with the maximum number of words in common. The algorithm
is presented in Figure 2.3.

Transfer During the analysis phase, an implicit translation rule is generated “on the
fly”. This consists of two parts:

Analysis of the input sentence: By comparing it to the source side of the matched
example translation, the input sentence is segregated into identical phrases i1...in
and analogous phrases d1...dm. Identical phrases are those phrases of the input
sentence, which are also contained in the matched source (in the right order).
Analogous phrases are the remainder parts, which are not contained in the example
sentence. The analysis algorithm is depicted in Figure 2.4. Note that the algorithm
is deterministic and will only return one sentence analysis, even if several ways of
matching might be possible.1

Alignment: For each di in the input sentence we identify the analogous phrase δi in the
matched sentence source. As shown in Figure 2.5, analogous phrases are identified
by positional correspondence, i.e. δi is situated between the same i-phrases as di.
The alignment of source and target side of the translation example is established
by means of the lexicon. For our translation algorithm, we only need to align the δ-
phrases. The translations obtained by lexicon lookup are filtered by the criterion
of occurrence in the example’s target. If the alignment is unanimous, only one
phrase δ̂′i will remain.

1For example, matching the input sentence “He hands the book to the child” on a rule source “X1 the
X2” should actually yield two different ways of matching, namely

1. X1 =“He hands”, X2 =“to the child .”

2. X1 =“He hands the book to”, X2 =“child .”

However, in the current implementation only the first match is considered, as we do not expect these
kind of matches to be very promising in the first place.
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Recombination All phrases di are translated by lookup in the lexicon which will give a
set of translation alternatives D′i for each di. The set of translations of the input sentence
is generated by performing a sequence of substitutions on the example target: Every δ̂′i
is replaced by all possible translations d′i ∈ D′i of di.

2 The recombination algorithm is
depicted in Figure 2.6.

Here is a (constructed) example that illustrates the translation process described:
Suppose our input sentence is

(2.1) “The children only eat sweets but no carrots.”

and our corpus contains the translation example

(2.2) “Vegetarians only eat vegetables but no meat. → Vegetarier essen nur Gemüse
aber keine Fleischprodukte.”

The input sentence would be divided into the identical phrases i1 =“only eat” and
i2 =“but no” and the analogous phrases d1 =“the children”, d2 =“sweets” and d3 =“carrots”.
The latter correspond positionally to the following phrases from the matched sentence
source: δ1 =“vegetarians”, δ2 =“vegetables”, and δ3 =“meat”. The translation of d1

and d2 (as we might find it in the lexicon) is “die Kinder” and “Süßigkeiten”, respec-
tively. We assume that the lookup of “carrots” yields several alternative translations
D′3, namely “Karotten”, “Möhren” and “Rüben”. Thus, the substitution generates the
following sentences:

(2.3) Die Kinder essen nur Süßigkeiten aber keine Karotten.

(2.4) Die Kinder essen nur Süßigkeiten aber keine Möhren.

(2.5) Die Kinder essen nur Süßigkeiten aber keine Rüben.

In the runtime-approach, the application of the replacement operation is exclusively
tailored to input and matched sentences. In the remainder of this section, we describe
two strategies of improvement. The first aims at improving translation recall for cases
where the input sentence is embedded in the matched sentence. The second aims at
avoiding boundary friction through the extension of different phrases.

Matched Sentence Cut

The purpose of the cutting procedure is to improve translation recall for cases in which
the input sentence is embedded in the matched sentence. As an example from our corpus,
consider the input sentence “Zeker niet.” that matches on the example translation: “Nee,
zeker niet. → No, certainly not.”. Here, the additional phrase “Nee, - No,” is cut away
such that the remaining “certainly not” can be identified as translation.

2Note that d-phrases are the only type of phrases that may match on the empty word ε.
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// input:

input sentence S

minimum number of matches required m

(e.g. number of words in S divided by 3 plus 1)

//initialisation:

matches = []

//loop through corpus:

For each example in corpus

min_index = 0

rule_score = 0

max_score = m

//loop through input sentence:

For each word w in S

If example source contains w

Then

new_index = word index of w in example source

after position min_index

If new_index exists

Then

increase rule_score by 1

min_index = new_index

End If

End If

End For

If rule_score = max_score

Then add example to matches

If rule_score > max_score

Then

matches = [ example ]

max_score = rule_score

End If

End For

Return matches

Figure 2.3: Runtime matching algorithm.
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//input:

input sentence = w_1 ... w_n

matched example source = s

// initialisations:

p = 0

GAP_I = TRUE // gap in i-phrases

GAP_D = TRUE // gap in d-phrases

i-phrases = [] // list of i-phrases

d-phrases = [] // list of d-phrases

//loop over the input sentence:

For j = 1 ... n

If w_j occurs in s after position p

p = end position of w_j in s

If (GAP_I)

add w_j to i-phrases

Else

extend last i-phrase with w_j

End if

GAP_I = FALSE // i-phrase continues

GAP_D = TRUE // end of d-phrase

Else

If (GAP_D)

add w_j to d-phrases

Else

extend last d-phrase with w_j

End If

GAP_I = TRUE // end of i-phrase

GAP_D = FALSE // d-phrase continues

End If

End For

return i-phrases and d-phrases

Figure 2.4: Runtime sentence analysis. Divides an input sentence into i-phrases and d-phrases.
Note the difference between the methods “add” and “extend”: While “add” inserts
the new element at the end of the list, “extend” modifies the last element of the list
by appending the content of the new element at its end. For the sake of simplicity, the
treatment of empty d-phrases is omitted.
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//input:

matched example source = S

identical phrases = i_1 ... i_m

// initialisations:

p = 0

p’ = 0

delta-phrases = []; //collection of delta-phrases

//loop over identical phrases:

For j=1...n

p’ = start position of i_j in S after position (p-1)

If (p < p’)

delta-phrase = substring of S from position p to p’

Add delta-phrase to delta-phrases

End If

End For

return delta-phrases

Figure 2.5: Runtime alignment algorithm. Identifies δ-phrases on the basis of positional correspon-
dence to d-phrases.
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// input:

matched example target: T

d-phrase = d_1...d_n

delta-phrases = delta_1...delta_m

// initialisation:

substitutions = [ T ] // collection of generated translations is

// initialised with matched example target

// loop over delta-phrases:

For j = 1 ... m

delta’-phrases = translations of delta_j

d’-hat-phrase = translation of d_j that occurs in T

// loop over delta’-phrases:

For each delta’-phrase in delta’-phrases

new-substitutions = [ ]

// loop over substitutions:

For each substitution in substitutions

new-substitution = substitute the first occurrence

of delta’-phrase in substitution

by d’-hat-phrase

add substitution to new-substitutions

End For

End For

substitutions = new-substitutions

End For

Return substitutions

Figure 2.6: Runtime recombination algorithm: Generates a set of translations by substitution from
the translation example target. Note that the actual implementation of this algorithm
includes another loop for δ̂′-alternatives, as it does not rely on an unanimous alignment.
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Conceptually, “Nee,” is a non-empty δ-phrase matching on an empty d-phrase. How-
ever, since in the analysis algorithm presented in Figure 2.4 d-phrases are determined on
the basis of the input sentence, empty d-phrases at the beginning and end of the input
sentence are not detected. Instead, the runtime algorithm will end up with a different
number of d- and δ-phrases, and – being unable to align these – will abort the translation
process. In order to prevent this, we cut an additional phrase a off the beginning or end
of the matched sentence, if the following requirements hold:

1. a is translatable and its translation a′ can be identified at the beginning or end of
the original target sentence.

2. The borders of both phrases a and a′ must be at the start/end of either the sentence
or an i-phrase.

Thus, the cutting algorithm is an extension of the sentence analysis algorithm in
Figure 2.4, which takes action during the first and last round of the loop over the input
sentence. If the above conditions hold, the algorithm modifies the matched sentence
source such that additional phrases before w1 or after wn are removed from the matched
example source. It further cuts off the translation of these phrases from the example
translation.

Phrase Enlargement

The aim of phrase enlargement is to reduce boundary friction in the translation. It is
based on the assumption that a larger context increases the probability to obtain an
accurate translation. Therefore, we extend the analogous d-phrases beyond the borders
of their neighbouring i-phrases.

For illustration, consider the following example: Suppose our input sentence “The
soup is cold” matches on the translation example “The tea is cold → Der Tee ist kalt”.
Sentence analysis yields the identical phrases i1 =“the” and i2 =“is cold” and the
different phrase d1 =“soup” which is analogous to δ1 =“tea”. This implies the translation
rule “The X is cold → Der X is kalt” and would result in the grammatically incorrect
translation “Der Suppe ist kalt”. Our solution to this problem is to enlarge δ1 from “tea”
to “the tea”, and accordingly adapt d1 to “the soup”. Assume the lexicon would contain
“der Tee” as translation from “the tea”, we obtain a new implicit rule “X is cold.→ X
ist kalt.”. Provided the lexicon knows the correct translation for “the soup”, we then
obtain the correct sentence translation: “Die Suppe ist kalt”. Thus, phrase enlargement
can deal with certain agreement problems in particular, provided that they only affect
neighbouring words.

The enlargement algorithm may also extend empty d-phrases. For example, consider
the input sentence: “I like this” matched on the translation example “I like this book→
Ich mag dieses Buch” Here, the only d-phrase according to our sentence analysis would
be the empty string ε. Our sentence analysis yield: i1= “I like this” , i2= “.” and
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d1 = ε. Without phrase enlargement, this results in the translation “Ich mag dieses”,
corresponding to the translation of i1. However, if we extend the d1 to “this”, a more
appropriate translation, such as “Ich mag es” can be obtained if the lexicon contains the
entry “this → es”.

The phrase enlargement algorithm consists of the following 3 steps:

1. Enlargement of δ-phrases (see algorithm in Figure 2.7)

2. Adaptation of d-phrases: Appending the pre- and post-phrases of corresponding
δ-phrases.

3. Filtering: Rejection of enlargements that yield untranslatable d-phrases.

First, the “largest translatable phrase” δ̄i is found for each of the analogous phrases
δi ∈ ∆i (see algorithm in Figure 2.7).3 A δ-phrase is translatable if a lookup in the
phrase table yields a non-empty set of translations of that phrase, and if at least one of
these translations occurs in the example translation

In the current implementation, enlargements are bi-directional but limited to one
additional word before and/or after the δ-phrase in the example source (pre- and/or
post-phrase). Note that the algorithm maintains the division of pre-phrase, post-phrase
and original δ-phrase. This information is needed for the next step, the adaptation of
d-phrases. Thus, the d-phrase is enlarged by simply appending the pre- and post-phrases
of its aligned δ-phrase left and right to the core d-phrase. During the final filtering phase,
all enlargements leading to untranslatable d-phrases (i.e. result of lexicon lookup of the
d-phrase returns is empty) are rejected. In sum, an enlargement d̄i is acceptable if the
following requirements are fulfilled:

1. δ̄i is translatable.

2. A translation of δ̄i occurs in the example translation.

3. d̄i is translatable.

2.1.3 Compiled EBMT

The compiled approach is an instance of two-phase EBMT. It uses a precompiled corpus,
which contains a translation grammar in the form of translation rules attached to each
translation example. In our implementation, the translation rules consist of untyped
templates, i.e. they contain some words from the original sentences and variables repre-
senting the remainder words. The templates are generated on the basis of the phrase

3Notation: δ′ is the translation of δ, δ̂′ is the translation that actually occurs in the example, δ̄ is the
enlarged δ phrase.
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//input:
delta-phrases
matched example source S
i-phrases

//initialisation:
enlarged_delta-phrases []
If matched example source starts with i-phrase
Then i-phrase_counter = 0
Else i-phrase_counter = -1

//loop through delta-phrases:
For each delta in delta-phrases

preceding_i-phrase = epsilon
subsequent_i-phrase = epsilon
If i-phrase_counter > -1
Then preceding_i-phrase = i-phrases[i-phrase_counter]
If i-phrase_counter < number of i-phrases
Then subsequent_i-phrase = i-phrases[ i-phrase_counter + 1 ]
increase i-phrase_counter by 1

If Not empty (preceding_i-phrase) AND Not empty (subsequent_i-phrase)
Then largest_delta = preceding_i-phrase + delta + subsequent_i-phrase
If largest_delta is contained in lexicon
Then

Add largest_delta to enlarged_delta-phrases
Continue loop through delta-phrases

End If

If Not empty (preceding_i-phrase)
Then largest_delta = preceding_i-phrase + delta
If largest_delta is contained in lexicon
Then

Add largest_delta to enlarged_delta-phrases
Continue loop through delta-phrases

End If

If Not empty (subsequent_i-phrase)
Then largest_delta = delta + subsequent_i-phrase
If largest_delta is contained in lexicon
Then

Add largest_delta to enlarged_delta-phrases
Continue loop through delta-phrases

End If

Add delta to enlarged_delta-phrases
End For
Return enlarged_delta-phrases

Figure 2.7: δ-phrase enlargement algorithm: Generates the “largest translatable” δ-phrases.
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Figure 2.8: Sequence diagram for compiled approach.

table: Every occurrence of a phrase table entry phrase is substituted by a variable. A se-
quence diagram is to be found in Figure 2.8. Due to the pre-compiled translation rules,
the overall process during the translation phase is less sophisticated than in the run-
time approach. While the transfer phase is simpler, as the rule already contains major
alignment information, the matching phase exploits the rule in an additional prefiltering
step.

Matching In the compiled approach, matching is performed not only on the sentence
pair directly, but primarily on the translation rule. The similarity metric is a com-
bination of template-based matching and word-based matching. More specifically, the
matching process consists of the following two steps:

1. The input sentence must match on the translation rule source, i.e. it must contain
all words of the rule in the right order and may only contain additional words
where they match on variables (see Figure 2.9).

2. The number of words that the example sentence has in common with the input
sentence must be maximum. From all example translations whose rule matches
on the input sentence, we select those with the highest number of matching words
(see Figure 2.3).

Transfer The transfer phase of the compiled approach merely consists of instantiating
all variables in the rule source. As shown in Figure 2.10, this is achieved on the basis of a
comparison between rule and input sentence. Variable sequences lead to several alterna-
tive instantiations, as the borders between variable sequences cannot be re-established
unambiguously.

Recombination These instantiations are then translated by means of lookup in the
lexicon (which typically yields several alternative translations). Finally, the variables in
the target of the rule are substituted by these translations. Importantly, all combina-
tions of translation alternatives are generated, as Figure 2.11 shows.
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Again, suppose our input sentence is “The children only eat sweets but no carrots.”
Our corpus contains the same translation example as in Section 2.1.2, only this time it
has a translation rule attached, say “X1 only eat X2 but no X3. → X1 essen nur X2

aber keine X3.”. Then, we instantiate the variables X1 with “the children”, X2 with
“sweets” and X3 with “carrots”. Depending on the entries in the lexicon, the algorithm
will yield the same translations as in the runtime approach.

2.2 Evaluation

In this section, we describe our evaluation of the translation system. As corpus, we use
a questionary translated from Dutch to English. The corpus is relatively small (4428
sentences), but it contains a lot of similar sentences.

In Section 2.2.1 we show how the system deals with selected real-data examples,
before we present a quantitative evaluation of the system in Section 2.2.2.

2.2.1 Qualitative Evaluation

In this section, we discuss selected example translations to illustrate how the different
methods work on real data, and to compare the strengths and weaknesses of the different
translation methods. We also examine the rule generated from the example itself: If
this rule is empty, this means that all phrases of the input sentence are contained in the
lexicon.

Example 1: Ja in een gaming room (Yes in a gaming room)

Runtime For this input sentence, the string match only retrieves one translation ex-
ample:

(2.6) “Ja in een internet café → Yes in an Internet café”.

Matching against this sample, the input sentence is segmented into one identical phrase
i =“Ja in een” and one different phrase d =“gaming room”. The latter corresponds
positionally to δ =“internet café” in the matched sentence source. The lexicon translates
the phrases “internet café” and “gaming room” without changing them. Thus, the
runtime approach without use of the matched sentence cut or phrase enlarge function
yields the following incorrect translation: *“Yes in an gaming room”.

While, for this translation example, the cut procedure does not have any impact, it
is the enlarge function that achieves the correction of the article “an” into “a”. It does
so by enlarging δ from “internet café” to “een internet café” the translation of which can
be found in the phrase table as “an internet café”. Accordingly, d is adapted to “een
gaming room”, the translation of which is “a gaming room”. This yields the correct
translation “Yes in a gaming room”.
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// input:
input sentence S
//instantiations:
previousTokenIsVariable = FALSE
index_sentence = 0
index_rule = 0
matches = []
abort = FALSE

For each example in corpus
For each token in source

If token is Variable
Then

previousTokenIsVariable = TRUE
Else

index_sentence = first occurrence of token in S
after position index_sentence

If token does not occur in S after position index_sentence
OR (index_sentence > 0 AND NOT previousTokenIsVariable)

Then
abort = TRUE
Break loop through source

End If
previousTokenIsVariable = FALSE
index_sentence = index_sentence + Length(token) +1
index_rule = index_rule + Length(token)

End If
End For
If Not abort
Then

If previousTokenIsVariable
OR index_sentence = Length(S) +1

Then
Add example to matches

End If
End If

End For
Return matches

Figure 2.9: Compiled matching: The rule matching algorithm.
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// input:

input sentence S

translation rule

// initialisation:

instantiations = []

variables = []

current_index = 0

variable_index = 0

// loop through rule source

For Each token in rule source

If token is a variable

Then

add token to variables

If previous token was non-variable

Then variable_index = current_index

Else

current_index = position of token in S after current_index

substitute = Substring of S from variable_index to current_index

For Each possible division of substitute among the variables

For Each variable in variables

substitute_part = part of substitute corresponding

to variable in division

new_rule = variable -> substitute_part

Insert new_rule into instantiations

End For

End For

End If

End For

If variables is not empty

substitute = Substring of S from variable_index to current_index

Add substitution rules to instantiations (see above)

End If

Return instantiations

Figure 2.10: Compiled transfer algorithm: Variable instantiation. Variable sequences are instanti-
ated with all possible divisions of the substitute string.
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//input:

rule target

instantiations

//initialisation:

translations = [ rule target ]

// loop through instantiations:

For each variable in instantiations

initialise new_translations as mapping of variables to substitutes

// loop through alternative substitutes:

For each substitute associated to the variable

new_translation = Replace

all occurrences of instantiation variable

by instantiation substitute

add new_translation to new_translations

End For

translations = new_translations

End For

Return translations

Figure 2.11: Compiled recombination algorithm: Variable substitution.
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Compiled In the compiled approach, the correct translation is generated from an empty
rule “X1 → X1”. This is in line with the fact that the original rule generated from the
example itself is also empty. In other words, the sentence can be translated phrase
by phrase. However, unfortunately there are a number of additional rule matches on
either “in” or “een”, which – after long computation times – do not produce a correct
translation.

Example 2: Minder dan 1x per maand → Less than 1x per month

Runtime String based matching retrieves the following example translations for this
input sentence:

(2.7) “Minder dan 1 keer per maand → Less than once a month”

(2.8) “Minder dan twee keer per maand → Less than twice a month”

(2.9) “Ja minder dan éénmaal per maand → Yes less than once a month”

Processing of the first two examples fails during the transfer phase, as the d-phrases
“1 keer” and “twee keer” cannot be aligned. The reason is that these phrases are not
contained in the phrase table, because they are not one-on-one alignments (“1 keer →
once” and “twee keer → once”). However, example 2.9 can be successfully used by
means of the cut procedure. The cut procedure reduces the original example translation
to “minder dan éénmaal per maand → less than once a month” on the basis of the
translation pair “ja – yes”. Then, sentence analysis divides the input sentence in the
identical phrases i1 =“minder dan” and i2 =“per maand”, and the different phrase
d =“1x” positionally corresponding to δ =“éénmaal”. However, the resulting translation
“less than 1x a month” does not get the preposition right. This can only be achieved by
a combined use of the cut and the enlargement procedure. The latter extends d to “dan
1x per” and adapts δ to “dan éénmaal per”, which is translated as “than once a”. Since
the extended d is now translated as “than 1x per”, this results in a correct translation.

Compiled In the compiled approach, the correct translation is retrieved by an empty
rule. In fact, the example itself also has an empty rule attached, meaning that all
phrases are contained in the lexicon. Apart from this, there is only one more futile rule
match. Notably, neither of the translation rules attached to the string matches is of any
additional use:

(2.10) “X1 → X1”

(2.11) “Twee keer X1 → Twice X1”

(2.12) “X1 1 X2 → X1X2”
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Example 3: Dit onderzoek duurt ongeveer twee minuten van uw tijd→ This survey
will take about two minutes of your time

Runtime String match retrieves the following example translation:

(2.13) “Dit onderzoek duurt ongeveer drie minuten van uw tijd → This survey will
take about three minutes of your time”.

Due to an ambiguity in the translation of the phrase d =”twee” (translated as “twice”
or “two”), the runtime approach without phrase enlargement yields two translations:

(2.14) “This survey will take about two minutes of your time”

(2.15) “This survey will take about twice minutes of your time”

However, phrase enlargement can disambiguate, because it prefers the translation “two
minutes” of the extended d̄ =”twee minuten”, after having extended δ =”drie” to “drie
minuten” (“three minutes”). Thus, it generates exclusively the correct translation.

Compiled The compiled approach fails completely. The retrieved example rules match
on the preposition “van”, but the rule’s inherent translation of this preposition (“cloth-
ing”, “for”, “on”, “taken from the”) is in all cases inappropriate in this context. Note:
The original rule of the input sentence’s example is “corrupted”. It has an empty sen-
tence frame on the source side and a non-empty frame on the target side: “X1X2 → X1

about X2”.

Example 4: Dat is deels gelukt → I was partly successful

Runtime String matching retrieves the two example translations:

(2.16) “Nee dat is niet gelukt → No I was not successful”

(2.17) “Ja dat is gelukt → Yes I was successful”

Both examples require the cut procedure, which removes the preceding phrases “Nee
– No” and “Ja – Yes”, respectively. On the basis of the first example translation, the
runtime approach then comes up with the correct translation, but also with the incorrect
translation “partly was not successful”, due to the mis-alignment of “niet” to “I” in the
phrase table. Phrase enlarge can eliminate the incorrect translation alternative, by
extending δ =“niet” to δ̄ =“niet gelukt” and such that lookup of “niet” by itself is
avoided.
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Compiled The compiled approach gets the translation correct using the rule

(2.18) “X1 dat is X2 → X1 I was X2”

from the first string match.

Example 5: Sprak mij enigszins aan → Appealed to me somewhat

Runtime The runtime approach generates the correct translation and one acceptable
translation (“Did somewhat appeal to me”) plus 3 incorrect translations from overall 4
string-matches. The correct translation is generated from the example

(2.19) “Sprak mij persoonlijk aan → Appealed to me somewhat”

Here, phrase enlargement of “enigszins” to “mij enigszins” enables to eliminate the
incorrect translation “slightly”.

Compiled In the compiled approach, matching on the rule same example gives the
correct translation. The rule is:

(2.20) “Spraak X1 aan → Appealed to X1”

From the above examples, we can see that in the runtime approach the phrase en-
largement and the matched sentence cut procedures work effectively and even in combi-
nation (example 2). Phrase enlargement can either produce a new translation (example
1), or provide a disambiguation by eliminating incorrect translation alternatives (exam-
ples 3 to 5). As to the compiled approach, in examples 1 and 2 the correct translation
can be retrieved from an empty rule, as all phrases are contained in the lexicon (we can
see that from the fact that the rule attached to the input translation example is also
empty). In example 1 we further see that our translation rules are not always suitable
for matching. A stop word list is necessary to ensure reasonable computation times.
The rules retrieved by examples 4 and 5 are particularly nice example rules. Note that
Rule 2.18 could not easily be retrieved by any syntax-based method. However, while this
rule works perfectly well for the given context, it might produce nonsense translations
in a different context. In contrast, Rule 2.20 seems perfectly safe to apply.

In this section we have discussed individual translation examples. In the next section,
we evaluate the overall translation performance on the example corpus.

2.2.2 Quantitative Evaluation

We tested our implementation in 10-fold cross-validation on the following corpus: A
questionary translated from Dutch to English. The corpus is relatively small and con-
tains many similar sentences. It also contains repetitions of the same source sentences
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with contradictory translations. Therefore we do not use exact matches for transla-
tion. During preprocessing, we filtered internet addresses and untranslated sentences
(instructions for the translator, etc.). We also removed punctuation marks as their
usage is rather inconsistent in our corpus.4

We compiled a very small list of frequent words to be ignored by the similarity
metrics of the compiled as well as the runtime approach.5 For the compiled approach,
we only allow rules to match whose source contains at least one non-variable that is not
a frequent word. This is because – due to their high number in our rule set – processing
other kinds of rules would slow down the translation system considerably, while there
is a low prospect of obtaining a good translation. Instead, we add the standard rule
“X → X” to all matched rule sets. We collect the set of all sentences our translation
methods return and regard the result as “correct” if the gold standard translation is
contained in this set. We do so, because we assume that a monolingual language model
will often be able to select the correct translation.

The result of this experiment is shown in Figure 2.12. The result shows that the cut
and the enlarge extensions to the runtime approach work effectively. Phrase enlargement
can sometimes find new correct translations.6 The cut procedure is more effective, even
though its application is restricted to the requirements presented on page 46. The
result further shows that the compiled approach is roughly twice as good as the runtime
approach. However, the lexicon for this experiment was collected from the whole corpus.
On the one hand, this is in line with our assumption that sufficient word and phrase
translations are available. On the other hand, it can also be argued that lexicon entries
should not be collected from the test corpus, because this already includes too much
information about the translation of the test corpus. Hence we ran the first round of the
experiment again, filtering all lexicon entries that do not occur in the training corpus.
As shown in Figure 2.13, the performance of the compiled approach decreases to the
level of the runtime approach’s.

Overall, the result is disappointing, as either method only retrieves about 15% of the
gold standard translations. However, given the fact that we have built this translation
system from scratch and on a corpus of very small size, a good translation result was
not to be expected in the first place. One shortcoming of both approaches is their
limited ability to exploit single-word translations from the dictionaries. The runtime
operations do evidently improve the translation performance, but at the same time
they have the side effect of longer translation times. The compiled approach, on the
other hand, is crucially dependent on the quality of the translation rules. Some of our
translation rules have been counter-productive, as they contain non-variables exclusively
on the target side (e.g. “X1X2 → X1 about X2”). Other rules have been useless for

4We consider the following punctuation marks: “.”, “,”, “!”, “?”, “:”, “;”, “(”, “)”, “/” and “\”.
5For Dutch the list consists of the following stop words: “van”, “ik”, “het”, “een”, “de”, “is” “en”,

“u”, “of”, “te”, “voor”, “in”.
6As shown in Section 2.2.1, it can further discriminate between incorrect and correct translations, but

this disambiguation does not show in the result due to our evaluation method.
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round 1 2 3 4 5 6 7 8 9 10
Runtime 14.92 16.12 16.72 16.12 14.14 15.27 14.97 17.96 16.77 14.97
+cut 21.79 20.00 19.40 22.39 17.66 20.96 22.46 23.35 20.96 20.96
+enlarge 15.55 16.72 17.61 16.42 14.37 15.57 15.57 18.56 18.26 15.87
+cut & enlarge 21.49 20.00 20.60 22.99 18.26 21.26 22.75 23.65 22.75 21.86
Compiled 31.64 31.05 28.96 29.85 26.05 29.34 31.74 34.43 27.25 29.94

Figure 2.12: Percentage of correct translations in 10-fold-10 cross validation on Questionary corpus
without filtering the lexicon.

round 1
Runtime 15.64
+cut 19.87
+enlarge 16.29
+cut & enlarge 20.52
Compiled 14.66
only correct in runtime approach 10.10
only correct in compiled approach 8.79

Figure 2.13: Percentage of correct translations in first round of 10-fold-10 cross validation on
Questionary corpus after filtering the lexicon.

matching, because they are no longer representative for the example translation they
stem from (e.g. Example 2.11). The best translation performance was achieved by the
compiled approach without filtering the lexicon, where the rules have been perfectly
complementory to the lexicon entries.

Hence, the crucial question is: What should a translation rule look like? In our view,
a translation rule should be two things:

1. Representative for the translation example

2. Adapted to the lexicon and other translation resources

Such a translation rule, we call translation frame.
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Since the best MT approach seems to consist in a (yet undiscovered) synthesis of SMT
and EBMT, our work might contribute to determine specific features of this synthesis.
Our focus is on structural discrepancies, as we assume the translation of sentences that
can be translated in a non-crossing one-to-one aligned fashion to be comparatively trivial.

Our approach relies on the assumption that a sufficient amount of these lexical trans-
lations is available. These may be obtained through the combined use of dictionaries and
SMT word alignment tools, for example. We believe this assumption is quite realistic,
even for any language pair. At least, it should be much more realistic than presuming
the existence of deep processing linguistic resources (e.g. robust parsers). If available,
these linguistic resources (in particular morphological processing) may be incorporated
into the system in future work if this improves performance. However, this thesis pur-
sues a language-independent approach based on shallow processing and incorporates a
bi-lingual dictionary as the only linguistic resource.

Our method is based upon a translator-oriented view of translation, as it particularly
emphasises the compromise between source sentence and target language that transla-
tion always involves.1 Simply speaking, we assume a translator is torn between the
requirements of the source sentence (meaning) and those of the target language (gram-
maticality). However, more clearly it has been explained by Mansell (2005), whom we
would like to mention as our major source of inspiration in this respect. Mansell applies
Prince and Smolensky (2002)’s Optimality Theory (OT) to the translation of poems.
He thereby takes the translator, the “intelligent, thinking”creator of text, as the start-
ing point of his theory. In the OT framework, translation competence is modelled by
means of universal violable constraints. Importantly, there are two groups of constraints:
faithfulness constraints and markedness constraints. Faithfulness constraints demand fi-
delity to the input, and markedness constraints demand unmarked output. Notably,
while faithfulness constraints “demand a certain relationship between input and output
features”, markedness constraints: “demand a certain feature in the output, regardless of

1“Is translation really possible? [...] The answers we will suggest are: No, in a certain sense translation
is impossible [...] Perfect translation is impossible because meanings and interpretations are not like
soft and pliant substances extractable from one expression in one language and mouldable without
loss or modification into another expression in another language. Languages, on the contrary, are
discrete structures, and meanings are inextricably entwined in the structures themselves; the message
is enmeshed in the medium. Therefore, during translation, things crack and snap, things disappear,
and things are added. The target language is like a Procrustean bed for the source language. The
source language is never quite comfortable – it tosses and turns and finds that it can rest its shoulder
in this position and its leg in that position, but no position will rest it all at once.” (Dyvik, 2005)
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whether or not it is present in the input” (Mansell, 2005). Due to frequent contradictions
(“faith constraints demand that things stay as they are, and markedness constraints de-
mand change” (Mansell, 2005)), translation involves an inherent compromise between
the two types of constraints. The only amendment we make to this translator-oriented
view is that we ignore the direction of translation.

In SMT, the compromise between source sentence and target language has been
reflected by the two components translation model and language model (Brown et al.,
1990). The ultimate probability of a candidate translation is calculated as the product
of two probabilities independently derived from these two components. However, it has
been criticised that in this way grammaticality is merely modelled in a post hoc fashion
rather than built in at the core of a translation system (Way & Gough, 2005; Groves
& Way, 2005). We propose to model the source-target compromise at the very core of
MT: the alignment.

In Section 3.1, we describe an alignment model, which particularly emphasises the
compromise between source and target language, because it models dependencies along
two dimensions. In Section 3.2, we develop a method how to generate translation rules
from two-dimensionally aligned translation examples.

3.1 Two-Dimensional Alignment

In contrast to the translation problem, the task of the alignment problem does not in-
volve producing a translation of the input sentence. Rather, it consists of an analysis of
the original sentence and its translation, both of which are provided as input. The task
is to find a mapping between those words of the two sentences in the different languages
that convey the same meaning (Lopez & Resnik, 2006). This mapping may be on a
single-word basis (word alignment) or on the basis of contiguous or even discontiguous
phrases. Naturally, a reliable alignment provides a good basis for any machine transla-
tion algorithm (SMT and EBMT alike). However, when working with state-of-the-art
statistical alignment tools, like Giza++ by Och and Ney (2000), it soon becomes clear
that the alignment problem can neither be called “trivial” nor “solved” (at least not for
small corpus).

From a linguistic perspective, the most unreasonable concept in existing word and
phrase alignment models is the notion of empty cepts. Naturally, it cannot be assumed
that words emerge out of nothing. Rather, what is reasonable, is to search for some
kind of reason or justification for every word in a sentence pair. In statistical alignment,
justification is modelled in the form of statistical correlation. However, most existing
alignment models have limited their search for justification to the words in the sentence’s
translation. As illustrated in Figure 3.1, we call the connection between the sentence and
its translation the inter-sentential dimension. The dimension within the two respective
sentences, we call intra-sentential. This dimension has been modelled by various gram-
mar theories, but it has (at least to our knowledge) so far been neglected in alignment
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Figure 3.1: Illustration of the intra-sentential and the inter-sentential dimension in translation.
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models.
Unfortunately, pinpointing a word’s justification within the translated sentence is

hard and often impossible, even for humans (see Figure 1.6 on page 14). It must be
accepted that not all words can be aligned directly via the inter-sentential dimension,
because not all words are translatable to all languages. Phrase alignment circumvents
the problem of finding justifications for single words by treating them as parts of larger
chunks (see Figure 1.8 on page 15). Two-dimensional alignment is different, as it models
the intra-sentential dimension explicitly in terms of statistical correlations. In other
words, it extends the search space along the intra-sentential dimension. It is based
on the following assumption: Often it will be more reasonable to search for a word’s
justification within the sentence itself, than in its translation.

Figure 3.2: Direct alignment of w2 and w′3.

Figure 3.3: Indirect alignment of w′1.

In order to build up an alignment without empty cept, it is the following question
that must be answered for every word w in the sentence pair: Why does w occur in the
sentence pair? Along the inter-sentential dimension, the answer should be this: Because
it conveys the same meaning as some word w′ in the translated sentence. Statistical
alignment (Brown et al., 1990) goes one step further as it aims to identify w’s translation
by means of co-occurrence as main criterion2: argmaxw′P (w|w′). In these terms, we can

2To keep things simple, let us ignore distortion and fertility models at this point.
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Figure 3.4: Indirect alignment of w′1 and w4.

paraphrase the question as: Would w still be part of the sentence pair if it was not for
w′? Along the intra-sentential dimension, there is the very same question to be asked.
The only difference is that, here, the answer will not yield a translation, but a trigger
of w. Thus, intra-sentential dependencies can be calculated statistically by maximising
the dependent probability P (w|s) of a word w and its trigger s.

Along which dimension a word will be aligned, depends on the strengths of its (com-
peting) inter- and intra-sentential dependencies. Some words can be aligned directly via
the inter-sentential dimension, because they are translatable, i.e. the sentence’s transla-
tion contains a translation of the word which represents (most of) the word’s meaning.
For the remaining words, these direct alignments (see Figure 3.2) serve as anchors to
which they can be connected via an indirect alignment (see Figures 3.3 and 3.4). In
contrast to other word- or phrase-based alignment models, a two-dimensional alignment
model can directly model n-to-m non-consecutive word alignments, thanks to the mech-
anism of indirect alignment. More specifically, alignments containing contiguous as well
as discontiguous phrases can be aligned in two steps :

1. Establish direct alignment of some of the words by means of inter-sentential de-
pendencies (illustrated as bi-directional straight arrows).

2. Indirectly align the remaining words by means of intra-sentential dependencies
(the curved arrows).

We now illustrate the two-dimensional alignment model on the translation example
by Koehn (2004):

(3.1) Morgen fliege ich nach Kanada zur Konferenz. → Tomorrow I will fly to the
conference in Canada.

Figure 3.5 shows alignments along the inter-sentential dimension, which we believe can
safely be established and that humans can agree on. In contrast, the remaining words
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Figure 3.5: Example of inter-sentential dependencies.

Figure 3.6: Example of intra- and inter-sentential dependencies.

are harder to align directly, and are thus more likely to end up unaligned (i.e. aligned to
the empty cept in existing alignment methods, e.g. (Brown et al., 1993)). Strikingly, all
the remaining words in this example are function words. We believe this is no accident:
Across languages it seems easier to align content words, while function words often lead
to ambiguity. One example in this sentence pair is the English word “to”: Should it be
aligned to “nach” or to “zur”? Humans will not be able to agree on either way, because
the meaning of “to” is really distributed over both words. In practice, content words
will also appear unalignable along the inter-sentential dimension, but (at least for closely
related languages) we expect this being due to sparse data and language evolution more
often than to an inherent untranslatability.

We now discuss how the remaining words could be aligned via the intra-sentential
dimension. Figure 3.6 shows the intra-sentential dependencies, which we hope can be
established for the yet unaligned words in the two sentences. We regard the determiner
“the” as depending on the noun “conference”, and the preposition “in” as depending on
the noun “Canada”, because without these words they would not occur in this context,
respectively. Note how in grammar theories these particular dependencies may be treated
in quite different ways: For example in head-driven grammars, it is noun and preposition
that are the head of a noun and prepositional phrase, respectively. As to the preposition
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“to”, we regard it as depending on the verb “fly”, because it can only be used with
verbs of movement (“fly”, “go”, etc.) but not possibly with a verb like “sit”. Finally, we
would like to point out the dependence of “will” on “Tomorrow”, because this yields the
following discontiguous phrase translation: “Morgen” → “Tomorrow ... will”. However
unlikely that such a phrase will be covered by grammar theories, it appears particularly
useful for the purpose of MT. Finally, note that with regard to contiguous phrases, such
intra-sentential dependencies have the same advantage as discontiguous phrases even if
the words are adjacent: Additional words can be inserted in between without this causing
any additional problems. For example, an adjective could be inserted between “the”
and “conference” (e.g. “the annual conference”) without the intra-sentential dependency
being affected.

Before we discuss other examples of two-dimensional alignment, we must admit
that all dependencies we indicate in the examples of this chapter are merely based on
our own intuition and hence cannot be taken for granted. We propose a conservative
use of inter-sentential dependencies leaving all controversial alignments to the intra-
sentential dimension. Hence, a certain degree of ambiguity in the latter dimension is
unavoidable. Since we establish intra-sentential dependencies by statistical methods, the
actual alignments will decisively depend on the underlying corpus. The example’s main
purpose is to show that two-dimensional alignment offers enough flexibility to cover a
wide range of structural discrepancy phenomena.

Let us now consider an example translation from French to German (English trans-
lation: “He looks at the painting.”):

(3.2) Il regarde le tableau. → Er schaut das Bild an.

The German verb “anschauen” (English: observe, look at) has a separable prefix “an”
which (depending on sentence structure) can be placed quite far away from the remainder
verb. In conventional word alignment, “an” would most likely be aligned to the empty
cept, because the source word “regarde” can be aligned to at most one target word, and
this will probably be “schaut”. However, as shown in Figure 3.7, our model can align
“an” indirectly to “regarde”, via the intra-sentential dependency of “an” on “schaut”.

Figure 3.7: Indirect alignment of a separable prefix in a French-German translation example.
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Figure 3.8: Alignment for English-Chinese (Mandarin) translation example.

Due to its inherent flexibility, we believe that the two-dimenisonal alignment model
may be particularly suited for translation between very different (unrelated) languages.
Figure 3.8 shows a translation example in which an English sentence is translated into
a Chinese bǎ-sentence. The Chinese particle 把 bǎ does not actually have any mean-
ing, except that bǎ-sentences emphasise the result or effect of the sentence’s action –
which must be directed to someone or something – more than plain sentences. More
importantly,把 bǎ changes the sentence’s word order from standard SVO to SOV, more
specifically: Agent (Subject) + ba + Object + Verb. Since bǎ is untranslatable, it must
be aligned indirectly. In (Schuch, 2008), we have conducted experiments in which we
extracted bǎ-triggers from Chinese sentences, namely the word s which maximises the
probability P (bǎ|s). The result showed that bǎ is more often triggered by verbs than by
any other word class. In particular the verb 放 fàng is a frequent bǎ-trigger: In experi-
ments with the PH corpus (newspaper text) it was the third-most frequently extracted
bǎ-trigger (extracted 71 times). Hence, an intra-sentential dependency of bǎ on 放 fàng
is most likely. Just as把 bǎ is untranslatable into English, the definite determiner “the”
is by itself untranslatable into Chinese. In English, however, some determiner is required
by the nouns “book” and “table” in this context. Finally, we would like to point out the
different treatment of the English preposition “on” and the Chinese preposition 在 zài:
If we look at it closely, the English “on” has a function (the function of a preposition) as
well as a meaning (namely “on top of” rather than e.g. “underneath”). In Chinese, these
two are realised separately, the function by 在 zài and the meaning by the postposition
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上 shàng 3. Thus, we can easily align “on” directly to 上 shàng, while 在 zài (despite
being of the same word category) can only be aligned indirectly. Where exactly this
word will be aligned, however, will depend on the details of the dependency-calculation
method.

Two-dimensional alignment can be implemented with purely statistical methods.
This has been shown by Fraser and Marcu (2007), whose LEAF model is a generative
alignment model, which directly models M-to-N non-consecutive word alignments via
the intra-sentential dimension. Statistical modelling profits from that fact that depen-
dencies are modelled between single words rather than combinations of words, because
single words are more likely to occur in corpora with representative frequency. At
the same time, two-dimensional alignment seems more plausible for human annotators,
which means that better quality training data can be produced by human annoation.
However, a statistical model might not be the only way to establish two-dimensional
alignment. One particular advantage of two-dimensional alignment is that intra-senten-
tial and inter-sentential dependencies can be established independently of each other.
Theoretically, both types of dependency can be established by means of statistical align-
ment, linguistic resources or a combination of both. In practice, the availability of vast
amounts of monolingual corpora (in contrast to bilingual corpora, which are still com-
paratively scarce) may allow to build a reliable statistical model of the intra-sentential
dimension, while the inter-sentential dimension might profit from the availability of
bilingual dictionaries. That way, the two-dimensional alignment model could also incor-
porate contiguous and even discontiguous phrases as basic building blocks, given their
availability in the lexicon. On the inter-sentential dimension, these could capture the
meaning of phrases that cannot be decomposed into individual words (c.f. idioms).
On the intra-sentential level, this could capture grammatical relations between phrases
rather than words (which exist in most grammar theories). However, in this thesis, we
will restrict ourselves to words as building blocks of our alignment model.

So far, the LEAF model is the only implementation of two-dimensional alignment
we are aware of. Fraser and Marcu (2007) have developed an unsupervised as well as a
semi-supervised generative model, and have shown them to be effective for translation

3c.f. 他 tā 把 bǎ 书 shú 放 fàng 在 zài 桌子 zhuǒzi 下 xià 。 – He puts the book under the table.
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within an SMT system.4 Fraser and Marcu (2007) classify the words on the source side
as head words, non-head words, and deleted words; and the words on the target side as
head words, non-head words, and spurious words.

The purpose of head words is to try to provide a robust representation of the
semantic features necessary to determine translational correspondence. This
is similar to the use of syntactic head words in statistical parsers to provide
a robust representation of the syntactic features of a parse sub-tree. (Fraser
& Marcu, 2007)

In LEAF, a head word is linked to zero or more non-head words; and each nonhead
word is linked to from exactly one head word. Fraser and Marcu (2007)’s links between
head words of the source and target sentence are what we call inter-sentential depen-
dencies. Their links between a non-head word and a head word are our intra-sentential
dependencies. LEAF has some deficiency, as part of the probability mass in the model is
allocated towards infeasable alignment structures concerning non-spurious target word
placement and source word linking. However, in contrast to other alignment models, it
does not have any structural restrictions such as 1-to-1, 1-to-N or phrase-based (all of
which can be implemented as special cases of LEAF).

For an EBMT system, we believe LEAF is one possible implementation of two-
dimensional alignment – but not necessarily the only way. LEAF’s generative story
consists of the following steps:

1. determine the word type of each source word

2. find a source head word for each non-head source word

3. determine a target word to be linked to each source head word

4. determine the number of non-head target words to be linked to each target head
word

5. determine the number of spurious words

4For this, Fraser and Marcu (2007) implemented the following local search operations:

1. move French non-head word to new head

2. move English non-head word to new head

3. swap heads of two French non-head words

4. swap heads of two English non-head words

5. swap English head word links of two French head words

6. link English word to French word making new head words

7. unlink English and French head words.
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6. determine spurious words

7. link non-head target words to each target head word

8. determine the positions of target words (head and non-head)

9. determine the positions of all spurious words

The modelling of intra- and inter-sentential alignments is covered by steps 2, 3, and
7. However, LEAF goes beyond this, as it also attempts to predict the number of
target words and their positions in the target sentence. Within an SMT system, this is
necessary, because the alignment model is used for generating new translations. Thus,
LEAF attempts to predict how many non-head target words will be linked to every
head target word t (step 4) on the basis of the identitiy of t and the cept size of its
inter-sententially aligned source head word. In step 1, it does not only distinguish head
words from non-head words, but also attemps to predict which source words s will be
deleted in the target sentence, on the basis of the identity of s. Likewise, it attempts
to predict “spontaneously appearing” spurious words s on the basis of the identity of
s (step 5). From a linguistic perspective, not all of LEAF’s predictions seem feasible,
given that they are based on so little information. However, within an EBMT system, the
alignment model can focus exclusively on the analysis of existing translation examples,
if the task of generating new translation examples is taken over by translation rules.
As a consequence, only steps 2, 3 and 7 must be modeled explicitely by alignment.
All other steps should be regarded as superfluous (in particular steps 8 and 9), or a
means to an end (for example, step 1 may help to increase alignment precision). For
two-phase EBMT, it is sufficient if their corresponding information appears implicitely
in the translation rule.

In the next section, we discuss how to generate translation rules from two-dimensionally
aligned translation examples.

3.2 Translation Frames

While in Section 3.1 we have argued in favour of a two-dimensional alignment model,
in this section we discuss how such an alignment could be used for preprocessing in
two-phase EBMT.

As discussed in Chapter 1, preprocessing has the advantage that it can relieve the
computational load during translation. This is the case if the resulting data structure

1. is faster to process than the plain string

2. provides additional information needed for translation.

A frequently used data structure are templates, in which some parts on both sides of
the translation example are replaced by variables. Templates introduce the following
mechanisms to avoid boundary friction:
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1. If the template is representative of the original sentences, template matching allows
for a more informed similarity metric than matching on the overall source sentence.

2. Words that occur in the template are excluded from replacement.

3. Typed variables allow for the unified treatment of various kinds of translation
knowledge (Kaji et al., 1992).

4. Templates may contain word re-ordering information implicitely, i.e. they do not
depend on an explicit (distortion) model.

5. Templates may introduce additional words on the target side without linking them
to an empty cept (rather, they are linked to the overall template).

Preprocessing consists in some form of generalisation of the original example trans-
lations in the corpus. However, this should be regarded as a controversial issue, because
it bears the risk of losing crucial information:

“[Since] variables in templates allow for paradigmatic variations at some pre-
defined positions only [. . . ] templates may well be insufficient in representing
all of the implicit knowledge contained in examples” (Lepage & Denoual,
2005b).

For example, consider the template “X salts Y ” generated from the sentence sentence:

(3.3) “The butcher salts the slice.”5

“Firstly, it prevents the butcher from being changed into a plural: the butch-
ers. Moreover, it overlooks the fact that salts may also commute with its
past and future forms, etc.: salted, will salt, etc., or with cuts, smokes, etc.;
and so forth.” (Lepage & Denoual, 2005b)

This example illustrates what we call the preprocessing dilemma:

1. Preprocessing must not delete information needed for translation of an unseen
input sentence.

2. Preprocessing must generalise sufficiently to match on an unseen input sentence.

These two requirements are in conflict with one another.
In our view, these conflicting requirements can only be reconciled by a very sensitive

preprocessing method that minimises the risk of information loss. Everything depends
on whether we can make a distinction between important and unimportant information
during the preprocessing phase. The biggest obstacle consists in the fact that during

5The example originally stems from (Carl, 1998).
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preprocessing we have no knowledge of the sentence to be translated. Given that the
input sentence is unknown, the best we can do is evaluate statistically which part of
the information is most likely to be helpful or unhelpful for translation. However, other
2-phase EBMT approaches (Carl, 2001; Cicekli & Güvenir, 2001; McTait, 2001) do not
introduce such a likelihood factor, and thus forego the possibility of automated tuning.

Our aim is to generate templates which are representative of the sentence pair. Such
a template, we call translation frame. In order to be representative, the translation
frame must maintain all translation-relevant information that cannot be retrieved from
other information sources available during translation. All other information should
be abstracted away in order to maximise the chance of matching on an unseen input
sentence. During preprocessing, we have no knowledge of the input sentence to be
translated. However, we still have the following information:

1. Knowledge about source and target language

2. Knowledge about translation resources

Source and target language knowledge is telling us what kind of source and target
sentences, respectively, we can expect as a likely translation task. The translation re-
sources determine which part of the information contained in the full string example
can be re-established if required during the translation phase. This part of the infor-
mation should be abstracted away. For example, in contrast to the templates extracted
by Cicekli and Güvenir (2001) and McTait (2001), translation frames shall not contain
single word or contiguous phrase translations, because those are better stored and re-
trieved from a lexicon. As to language knowledge, there are two sources: the (statistical)
properties of a corpus, and linguistic theory.6 As to translation resources, our approach
requires a bilingual dictionary at the minimum.7 Further information, e.g. POS, may
be incorporated if available.

With a lexicon as main translation resource, the most important task of the transla-
tion frame is to capture the structural discrepancies between source and target sentence.
Structural discrepancy, in our view, is any divergence from non-crossing word-by-word
(or phrase-by-phrase) alignment. From this point of view, there are two indicators for a
structural discrepancy:

1. The occurrence of a word whose translation cannot be found in the other sentence
(untranslatability)

2. A divergence of word order between source and target sentence

6While linguistic theory can deal with higher levels of complexity because it does not suffer from a
sparse data problem, corpus information is more easily computed and verified. Thus, the best result
can be expected by combing these two resources.

7In relation to other linguistic resources, such as parsers or even just POS taggers, we believe that
assuming the existence of a bilingual dictionary is relatively realistic for any language pair.
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Figure 3.9: Major influences on the translation frame.

A translation frame that is supposed to capture these structural discrepancies is
more than a mere combination of two sentence frames. As illustrated in Figure 3.9,
the translation frame is influenced by the lexicon, as well as the source and target lan-
guage. In order to combine the latter two, source and target frame must be constructed
interdependently on one another. In the following section, we discuss how to capture
untranslatability in a translation frame on the basis of the two-dimensional alignment
model from Section 3.1.

How to Capture Untranslatability in a Translation Frame

We divide the words in the example sentences into two categories:

translatable words: Pairs of words in both sentences that can be aligned directly by
means of the language resources (lexicon).

untranslatable words: Words in the sentences that cannot be aligned directly (either
because a translation of the word does not exist in the other language, or because
it does not occur in the sentence pair).

In the translation frame, these two word types should be treated differently: Normally,
translatable words are good candidates for being generalised over in a translation frame.
This is because the alignment of translatable words can always be re-established during
the translation phase as required. (This will be necessary in case the input sentence
also contains the same translatable word). In contrast, untranslatable words should be
included in the translation frame, because there is no way to re-establish them during
the translation phase.

However, abstracting over all translatable words often will not yield a representative
translation frame, because the meaning and usage of untranslatable words is typically
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dependent on certain other words they cooccur with. For example, let us reconsider
translation example 3.2 on page 71. The separable prefix “an” is the only untranslatable
word in this example. However, if we merely include “an” into the translation frame,
we obtain the following translation frame:

(3.4) X → X an.

This translation frame is counter-productive, because it matches on any possible sen-
tence and then produces an additional word (“an”) out of thin air. Thus, building the
translation frame exclusively out of untranslatable words is clearly insufficient. Rather,
the translation frame must also include (information about) additional words in support
of these untranslatable words. In traditional alignment models, untranslatable words
like “an” are aligned to the empty cept. As we have seen in the example above, empty
cepts pose a particular threat to translation frames.

In contrast to traditional word alignment models, the two-dimensional alignment
model does not align untranslatable words to the empty cept. Rather, untranslatable
words are aligned indirectly via intra-sentential dependencies to support words. Thus,
the two-dimensional alignment model introduces an easy option to generate translation
frames which cover all occurrences of untranslatability, namely:

1. Include all words into the translation frame

a) which take part in an indirect alignment,

b) or which cannot be aligned at all (if there are any).

2. Replace all other words by variables.

This way, alignment to the empty cept as in SMT alignment models, including LEAF,
is avoided completely. Just like Fraser and Marcu (2007), we align untranslatable words
indirectly whenever possible. However, even if it is not possible to establish an intra-
sentential dependency for it, the untranslatable word will not end up aligned to the
empty cept. Rather, it will be aligned to the overall translation frame.

If we apply this method on the two-dimensional alignment of example 3.2 (Figure 3.7
on page 71) the following translation frame is generated:

(3.5) “X regarde Y . → X schaut Y an.”

This translation frame provides a good basis for translating sentences such as:

(3.6) La fille regarde le ciel. → Das Mädchen schaut den Himmel an. (The girl looks
at the sky.)

Note that both parts of the translation frame (source and target side) are dependent
on the source as well as the target sentence. For example, consider this alternative
translation of the French sentence to German:
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(3.7) Il regarde le tableau. → Er betrachtet das Bild.

In contrast to example 3.2, this alternative does not contain any untranslatable words,
and is aligned in a non-crossing 1-on-1 manner. Without any structural discrepan-
cies needing to be represented, the translation frame of example 3.7 remains empty.
Likewise for other target languages, the very same source sentence can be turned into
different source frames, according to the particular structural discrepancies between the
languages. In contrast, if source and target frame are generated independently of each
other, the source frame is the same for all target translations and target languages. In
our view, interdependence between source and target frame is a prerequisite for capturing
structural discrepancies between source and target sentence.

Let us next take a look at a translation example between very remotely related
languages, the alignment from Figure 3.8 on page 72 (English–Chinese):

(3.8) “W puts the X Y the Z .→ W 把 bǎ X 放 fàng 在 zài Z Y 。

This translation frames can be used to produce new translations of unseen input sen-
tences, for example:

(3.9) She puts the box under the bed. → 她 tā 把 bǎ 箱 xiāng 放 fàng 在 zài 床
chuáng 下 xià 。

Our method can provide enough flexibility to cover structural discrepancies of even
remotely related languages because – in contrast to word-based SMT – there is no need
to restrict the search space. The above translation example also shows that POS on its
own is not always a reliable indicator for whether or not a particular word should be
generalised over. For example, one might assume that prepositions should be included
in a translation frame, because in most cases they are hardly translatable to another
language. However, based on this syntactic assumption, the matching opportunity “on
the bed”→ “under the bed” would be lost. In fact, “on” and “under” are not pure
function words in this context, because they do convey a certain meaning – and this
meaning is translatable between English and Mandarin Chinese. Thus, while we might
hope that our translation frames may bear some resemblence to Cowan et al. (2006)’s
extended projections (see Section 1.1.3), we are hesistant to impose any syntactic pre-
assumptions. That way, our method – if it was successful – could provide a test bed for
syntactic assumptions. We believe it is necessary to double-check syntactic assumptions,
in particular for remotely related language pairs. This is because syntax is a monolingual
description of language, and not a description of the structural discrepancies between
two languages.

Our translation frame generation method is a sensitive form of pre-processing, as it
is acting conservatively in order to avoid information loss. In particular, if a translation
example contains too many structural discrepancies, the method will refrain from any
generalisation and simply return the example string unprocessed. Such is the case with
Figure 3.6 on page 70. However, let us consider a slightly simpler sentence pair:
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(3.10) Morgen fliege ich nach Kanada. → Tomorrow I will fly to Canada.

Figures 3.10 and 3.11 show two alternative alignment models for this sentence pair,
the latter being based on the assumption that the inter-sentential connection between
English “to” and German “nach” can be established. Based on those two alignments,
our method would generate two different translation frames:

Frame for Figure 3.10: Morgen fliege X nach Y . → Tomorrow X will fly to Y .”

Frame for Figure 3.11: Morgen X Y Z. → Tomorrow Y will X Z.”

This shows how the lexicon exerts influence on the translation frame in our method.
Both translation frames incorporate a translation phenomenon that seems rather difficult
to capture by means of syntactic modelling: The change of tense from present tense
(German) to future (English). However, these examples also reveal that our translation
frames are faced with overgeneralisation. Variable sequences, as in the example above,
are particularly prone to overgeneralisation as they match on very flexible phrase length
(one phrase shorter, the other longer). Fortunately, overgeneralisation can be reduced
by POS typed variables (Cicekli, 2005), e.g.:

Figure 3.11 (typed): Morgen Xverb Ypronoun Zpreposition Wnoun. → Tomorrow Ypronoun

will Xverb Zpreposition Wnoun.”

Figure 3.10: Alignment example without lexicon entry “to–nach”.

Figure 3.11: Alignment example including lexicon entry “to–nach”.

81



3 Translation Frame Generation

To sum up, on the basis of two-dimensional alignment, we can generate translation
frames that are sensitive to source and target language as well as to the lexicon, just as
depicted in Figure 3.9. Moreover, the source and target side of our translation frames are
interdependent on one another. Our translation frames seem flexible enough to capture
structural discrepancies even between remotely related language pairs. We have also
provided some linguistic examples to show that they could be useful for translation. In
the next section we examine their usefulness with respect to real data.

3.3 A Prototype Implementation

We have implemented a prototype system, which puts into practice the most funda-
mental ideas of our approach. In order to keep things simple, we did not include any
linguistic information and exclusively rely on statistical measures, which are easy to
compute. We used the compiled translation method, the corpus and the lexicon from
Chapter 2.

Our translation frame generation method exclusively uses single word translations,
which are provided in abundance by the dictionary component of our lexicon. Further
single word translations are provided by the phrase table, using the sub-phrases lookup
function described Section 2.1.1. Since the compiled translation method is based on
phrase translations the overall translation process imposes a new demand on the lex-
icon: For non-crossing 1-on-1 aligned phrases the translation of single words must be
consistent with the phrase translations. More specifically, the lexicon must enable the
lookup of every single word as well as the whole phrase (and yield the same result).
While the translation table fulfills this requirement, the dictionary does not because it
does not have a phrase lookup mechanism. As a consequence, our prototype has one
major shortcoming: The compiled translation algorithm from Section 2.1.3 can only take
advantage of a translation frame if every variable matches on a single word. We believe
the shortcoming can be overcome in either of the following two ways:

1. either by a more efficient implementation phrase lookup in the dictionaries

2. or by adapting the compiled translation algorithm such that it can handle ε-
matching on variables.

We describe the prototype’s alignment method in Section 3.3.1, the translation frame
generation algorithm in Section 3.3.2, and a real corpus example in Section 3.3.3.

3.3.1 Calculating Intra- and Inter-Sentential Dependencies

In this section, we describe how we determine intra- and inter-sentential dependencies.
Inter-sentential dependencies are determined on the basis of the lexicon. The con-

dition for an inter-sentential dependency of a word t in the target sentence on a word s
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in the source sentence is merely that the lexicon lookup for s contains t. Unfortunately,
the lexicon offers no way to determine the strength of an inter-sentential dependency.
Accordingly, there may be several inter-sentential dependencies for one s or one t.

For intrasentential relationships, we use a language model that abstracts over the
order and positions of the individual words in the sentences, hence regarding a sentence
as an unordered set of words.8 Thus, the conditional probability P (w1|w2) signifies the
probability of a the word w1 occurring in a sentence where w2 occurs (regardless of their
positions). Given the definition of conditional probability for two events A and B

P (A|B) =
P (A ∩B)

P (B)

we determine its value by counting occurrences P (w2) and co-occurrences P (w1∩w2) of
the words w1 and w2 within sentences.9 The correlation value P (w1|w2) determines the
strength of the intrasentential relationship from the word w2 to the word w1 (directed
relationship). It ensures that low-frequency words w2 can be good triggers of w1. This
liberal language model, we have already used successfully to determine triggers of the
Chinese bǎ-particle (Schuch, 2008).

3.3.2 Translation Frame Generation Algorithm

Since our prototype system is limited to untyped templates, the template generation
problem essentially consists of the following question: Which of the words in the example
should be included in the translation frame and which should be replaced by variables?

The basic idea of our algorithm is the assumption that every word w in the source
and every word w′ in the target sentence must be “justified” either by an inter-sentential
or an intra-sentential dependency:

1. Either w is a translation of a word w′ in the sentence of the other language S ′

(inter-sentential dependency),

2. Or w is triggered by another word s within the same sentence S (intra-sentential
dependency).

Our translation frame generation algorithm includes the following words of the source
as well as the target sentence into the translation frame:

untranslated words u: All words u in the sentence S that cannot be found to be a
translation of any of the words w′ in the other10 sentence S ′ (according to lexicon
lookup).

8Note that we can ignore word order in the language model, because the rules are actually taking it
into account as an additional information source.

9Since our language model is much bigger than a bi-gram model, we first determine all words w1 in
the corpus, for which the calculation of P (w1|w2) is needed (because they are “untranslated”), and
then only calculate those counts – thus avoiding unnecessary storage use.

10We used the term other sentence to indicate
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supporting words s: For every untranslated word u ∈ S, the supporting word s is
the (translatable) word in the same11 sentence with the highest correlation value
P (u|s).

translations s′: All words s′ ∈ S ′ that are translations of a supporting word s ∈ S.

The remaining words T are all directly aligned to their translations, and are not involved
in any indirect alignements. They will be replaced by a variable, if their alignment is
non-ambiguous.

For every word v ∈ T to be replaced by a variable, there are two sources of ambiguity:

1. The other sentence might contain more than one translation of v.

2. The translation of v might at the same time be a translation of a different word
t ∈ T .

In order to enhance the chance of a word being replaced by a variable, we have im-
plemented one disambiguation heuristic that gives preference to those v, which can
only be aligned to exactly one v′ (in source-target as well as target-source direction).
More specifically, we align two variables v and v′, if at least either of them has exactly
one alignment. You find the variable disambiguation algorithm in Figure 3.13 and an
example in Figure 3.12. Afterwards, the variable alignment algorithm presented in Fig-
ure 3.14 ensures that only non-ambiguous alignments will be established. All words t,
whose alignment cannot be disambiguated by our heuristics are included in the sentence
frame.

Finally, we have implemented a variable sequence clean-up algorithm, which removes
variable sequences that are stable in the example with respect to translation. The
algorithm first identifies variable sequences that occcur on the source as well as on the
target side of the translation example. It then replaces such variable sequences by the
first variable of the sequences. It is important to do this step, because otherwise the
matching would be restricted to sentences that have exactly the same number of words
as the example translation. For example, consider the sentence

(3.11) I like this book. → Ich mag dieses Buch.

It might yield the rule

• the target sentence, if S is the source sentence

• or the source sentence, if S ist the target sentence.

11We used the term same sentence to indicate

• the source sentence, if S is the source sentence

• or the target sentence, if S ist the target sentence.
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Figure 3.12: The variable disambiguation algorithm filters out the dashed alignment. The other
two alignments are established: the left one because w′1 is exclusively aligned to w2,
and the right one because w4 is exclusively aligned to w′3.

(3.12) I like X Y . → Ich mag X Y .

The algorithm identifies the variable sequence X Y and changes it to X:

(3.13) I like X. → Ich mag X.

such that the rule also matches on sentences like

(3.14) I like books. → Ich mag Bücher.

The overall rule generation programme has the following parameters (to be set by
the user before running it):

1. Threshold for P (u|s), the minimum probability for an intra-sentential alignment
to be established

2. Maximum number of support words per untranslatable word

3. Support words must be translatable (or not)

In the next section, we show how the algorithm deals with an example translation taken
from our corpus.

3.3.3 A Real Corpus Example

With the translation system from Chapter 2, we have run another 10-fold cross-validation
as described in Section 2.2.2. This time, the compiled translation algorithm (see Sec-
tion 2.1.3) uses the rules generated by our translation frame generation prototype. Since
the size of the corpus is very small, all probabilities are computed on the full corpus.
In addition, we experimented with Good Turing Smoothing, but this did not influence
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// input:

source_word

source_sentence

target_sentence

n = number of translations of source_word in target_sentence

If ( n == 1 )

Then establish alignment between source_word and target_word

Else

For Each target_word in target_sentence that is a translation of

source_word

m = number of translations of target_word in source_sentence

If (m == 1)

Then establish alignment between source_word and target_word

End If

End For

End If

Figure 3.13: Variable disambiguation algorithm.

// input:

alignment a

s = index of source_word in source_sentence

t = index of target_word in target_sentence

If s is already aligned in a Then Return Error

If t is not yet aligned in a

Then align s and t

Else remove all alignments of t

End If

Return a

Figure 3.14: Variable alignment algorithm.

Round 1 2 3 4 5 6 7 8 9 10
Baseline Rules 31.64 31.05 28.96 29.85 26.05 29.34 31.74 34.43 27.25 29.94
Translation Frames 31.34 30.75 28.06 30.75 25.45 30.84 31.44 33.53 27.84 32.04

Figure 3.15: Evaluation on Questionary corpus (unfiltered lexicon).
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the result.12 As to the programme parameters, we set them in a most liberal way, be-
cause other settings did not seem to have a positive influence on the translation result:
We allow the programme to use all support words with P (u|s) ≥ 0.5 (translatable and
untranslatable support words alike).

As shown in Figure 3.15, the overall translation performance is almost identical to
that of the baseline rules. We suspect that the translation frames cannot perform any
better mainly because our dictionary cannot handle phrase translations. During the
preprocessing phase, the prototype replaces phrases by variables by looking up every
word individually first, and only then turning them into phrases (variable cleanup).
However, during the translation phase, the compiled EBMT algorithm attempts a lookup
of the whole phrase – and cannot re-establish the translation. In other words, input
sentences matching on a variable with more than one of its words cannot benefit from
the additional single-word translations provided by the dictionary. As stated earlier, we
believe this shortcoming of our prototype can be overcome by a different implementation
of either the lexicon or the compiled translation method.

We now present a translation frame generation example from the Questionary corpus
that has not been affected by this problem. Here is the translation example from which
the rule will be generated:

(3.15) “Kunt u van de tweede persoon in uw huishouden aangeven in welk jaar hij of
zij geboren is → Please indicate the year of birth of the second person in your
household”

Note that the example contains structural discrepancies, despite Dutch and English
being a rather closely related language pair. Let us consider a more literal translation
of the Dutch sentence:

(3.16) “Can you indicate of the second person in which year he or she was born”.

The “literal” translation still contains a structural discrepancy, as changing the position
of the verb “aangeven/indicate” is required to produce a grammatically correct English
sentence. It has probably been dismissed by the translator due to its low quality (too

12The smaller a corpus is, the more it can be expected to suffer from the sparse data problem: Nat-
ural language generally contains a high number of different low-frequency words, and low number
of different high-frequency words (roughly corresponding to Zipf law). Since moreover, language
evolution constantly produces new words, there is a considerable amount of word combinations that
cannot be observed in the training data (unseen events). We perform Good-Turing smoothing on the
word cooccurrences. Good-Turing smoothing is a discounting method which redistributes part of the
probability mass from the seen to the unseen events. This is achieved by adapting the frequencies
of the seen events according to the following formula:

r∗ = (r + 1)× nr+1

nr

with r being the frequency (“rank”) and nr the number of events with frequency r.
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impolite, too awkward). We believe it would be highly complex to capture the actual
translation from the corpus in a syntax-based translation rule.

Our algorithm first determines support words s for all untranslatable words u in
source and target sentence, and then includes these together with their translations
into the sentence frame. On the source side, the untranslatable words are: “kunt”,
“welk”, “hij”, “zij”, “geboren” and “is”. Figure 3.16 shows the smoothed cooccurrence
probabilities P (u|s) above 0.5 for these untranslatable words u their support word s from
the source sentence. On the target side, there are two untranslatable words: “birth”
and “please”. While there is no support word for “birth” at a probability above 0.5,
“please” has the following supports: “birth” (0.81), “indicate” (0.81), “person” (0.71),
and “household” (0.65).

u s (P (u|s))
kunt aangeven (0.91), persoon (0.88), hij (0.74), zij (0.67),

geboren (0.67), huishouden (0.63)
welk –
hij zij (0.67), geboren (0.67)
zij hij (0.74), geboren (0.67)
geboren hij (0.74), zij (0.67)
is zij (1.0), persoon (0.88), hij (0.74), geboren (0.67),

huishouden (0.67)

Figure 3.16: Cooccurrence probabilities P (u|s) above 0.5 in the source sentence, with u being an
untranslatable word, and s any support word from the sentence.

Here is how the algorithm builds up the translation frame: Firstly, all untranslatable
words are included in the translation frame.

(3.17) “kunt (...) welk (..) hij (...) zij geboren is → Please (...) birth”

Secondly, it adds all support words with a probability above 0.5.

(3.18) “kunt (...) persoon (...) huishouden aangeven (...) hij (...) zij geboren (...) →
please indicate (...) person (...) household”

Thirdly, the translations of these support words are also included to the frame. However,
the English words “indicate”, “person” and “household” are already in the frame. The
same holds for the Dutch words “aangeven”, “persoon”, and “huishouden”. The support
words “hij”, “zij” and “geboren” on the Dutch side, and “birth” on the English side are
untranslatable. Thus, the translation frame remains unchanged by this step.

Other words must be included in the frame, because their alignment cannot be
disambiguated by our heuristics. Thus, the Dutch word “van” and the two occurrences
of the word “of” are included in the sentence frame. The same happens to Dutch “de”
and the two occurrences of “the”. Inversely, there are two translations for the English
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word “your”, namely Dutch “u” and “uw”. Since our dictionary cannot distinguish
between the correct alignment (“your”–“uw”) and the incorrect one, all these words are
included in the frame. Finally, the Dutch word “of” (English: “or”) is misinterpreted as
a translation of either occurrence of the English “of”. The resulting translation frame
is:

(3.19) “kunt u van de X2 persoon in uw huishouden aangeven in welk X6 hij of zij
geboren is → please indicate the X6 of birth of the X2 person in your household”

Such a translation frame can yield perfect translations for sentences of the following
kind: “Please indicate the date/month/year of birth of the third/fourth/fifth/... person
in your household.” (sentences are taken from the corpus).

The intra-sentential alignments of the word “please” to “birth”, “person” and “house-
hold” are an indication that our corpus is insufficiently large for computing representative
distributions. Nevertheless, the example shows how our translation frame generation al-
gorithm can deal with real data, if it is not hampered by inconsistencies between word
and phrase lookup.
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4 Summary and Conclusions

In this thesis, we have examined the problem of machine translation from a theoretical
as well as a practical angle. In Chapter 1, we have presented an overview of the research
field, in Chapter 2 we have built a basic translation system capable of two-phase as
well as “pure” EBMT, and in Chapter 3 we have developed a new way of generating
translation frames on the basis of a two-dimensional alignment model.

The field of machine translation is huge – but the translation quality is still not
sufficient to yield the expected practical benefit. What used to be two distinct translation
paradigms – SMT and EBMT – has long been mingled into a variety of different methods.
Recent systems can no longer be classified as either SMT or EBMT. If most authors
still claim their system is either EBMT or SMT, that merely expresses in which line of
research tradition they place their work. Judging from their methodology, most systems
after (Brown et al., 1990) and (Nagao, 1984) are in some way a synthesis of the two
approaches.1

Placing our work in the EBMT tradition, we have built a translation system capable
of “pure” as well as two-phase EBMT. The lexicon of our translation system has been
obtained using statistical processing as well as linguistic resources. More specifically, the
phrase table contains 1-on-1 aligned phrases, which have been extracted from the corpus
on the basis of statistical alignment, while the dictionary contains single-word transla-
tions from two freely available online dictionaries. For “pure” EBMT, we implemented
a runtime translation method, which is exclusively based upon the comparison between
input sentence and translation example. For two-phase EBMT, we implemented a com-
piled translation method, which relies on pre-processed translation examples (templates)
as input. We further implemented two extensions of the runtime translation method,
namely a phrase enlargement and a matched sentence cut algorithm. In order to be
able to compare both translation methods, we have generated translation rules for the
compiled approach by replacing all occurrences of phrase table entries by variables.

Since we built the translation system from scratch and on the basis of a very small
corpus, we could not expect a good translation result. Accordingly, the overall experi-
mental results of both approaches were disappointing with only 15% correct translations
retrieved by either approach. However, our aim had not been to build a state-of-the-art
translation system, but to gain a better understanding of the different translation meth-
ods. As to the runtime translation method, our experiments have shown the effectiveness
of both of our extensions (phrase enlargement and matched sentence cut). As to the

1(Lepage & Denoual, 2005a) is an exception.
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compiled translation method, our experiments revealed good and bad kinds of template.
In particular, some of our templates were counter-productive templates as they consisted
of an empty source side and a non-empty target side (e.g. “X1X2 → X1 about X2”).
Other templates were not beneficial for template matching, because they were no longer
representative for the original translation example. The best translation performance
was achieved by the compiled translation method with translation rules and lexicon
perfectly complementary to each other. Under these conditions, our implementation of
two-phase EBMT largely outperformed our “pure” EBMT approach.

Based on these insights we re-approached the problem of template generation from
a theoretical perspective. Firstly, the lexicon should have a crucial influence on transla-
tion rule generation, as well as the source and target language. Secondly, we explicitly
aimed at a sensitive preprocessing method that would maintain the template’s represen-
tativity for the translation example. Such representative translation templates, which
incorporate the structural discrepancies between the source and target sentence, we call
translation frames. In contrast to previous approaches, we propose to build them on
the basis of a two-dimensional alignment model. Such an alignment model enables the
alignment of untranslatable words that would normally be aligned to the empty cept to
be aligned indirectly via intra-sentential dependencies. Our prototype system establishes
intra-sentential alignments statistically and inter-sentential alignments via the lexicon.
Our translation frame algorithm includes all those words in the frame that are involved
in an indirect alignment.

We believe that this way of template generation has a high potential for the following
practical advantages: Firstly, the method enables the usage of single-word translations
for translation frame generation. This is of great advantage given that bilingual dictio-
naries are widely available and word translations can be extracted from bilingual corpora
more effectively than phrase translations. At the same time, our method does not re-
quire a translation for every word in the sentence, allowing for the fact that some words
are untranslatable. Secondly, our method allows for intra- and inter-sentential dependen-
cies to be computed independently of one another, and with independent methods. For
example, intra-sentential dependencies can be computed on monolingual corpora, while
inter-sentential dependencies can employ bilingual dictionaries. Thus, on the whole our
method offers a great flexibility.

Unfortunately, the potential of our method has so far not materialised in practical
experiments. Again, a “good” overall translation performance was not to be expected
due to limited resources. For example, our experiments revealed that the amount of data
from which we have calculated the probabilities for the intra-sentential dependencies
was insufficient. As to comparing the translation performance to that of the baseline
system from Chapter 2, it must be borne in mind that our translation frame generation
algorithm uses the lexicon in quite a different way. First of all, the baseline system’s
performance depends on phrase translations, while the quality of the translation frames
depends on the quality of single-word translations. This makes it impossible to run
experiments comparing the performance of the two translation rules, which do not at the
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same time also compare the quality of phrase and single-word translations in our lexicon.
Furthermore, the combined use of single-word translations (during pre-processing) and
phrase translations (during translation) demands the lexicon to provide consistent phrase
and single-word translations for non-crossing 1-on-1 aligned phrases. Since the dictionary
component of our lexicon does not support phrase lookup, this requirement is not always
fulfilled. The baseline methods are hardly affected by this shortcoming of our lexicon,
but they are rarely able to make use of the dictionary in the first place. Finally, the
translation frame algorithm itself is affected by lexicon entries in two ways: On the one
side, words that are generally translatable but do not have an entry in the lexicon will
automatically remain in the translation frame – even together with their support words.
That way, the translation frame may become virtually unmatchable because it is too
specific. On the other side, imperfect translations, as we suspect they are contained
in the phrase table, may also hamper performance. They prevent indirect alignment
of untranslable words. Thus, our method requires a lexicon that provides high quality
translations of translatable words, not one that provides low quality translations for
all words. The distinction between translatable and untranslatable words should be
examined further in future work.

We have developed an EBMT approach which strongly relies on an alignment model,
which is more typical for SMT systems. Moreover, this alignment model can be com-
puted completely statistically as in (Fraser & Marcu, 2007), or – as in our prototype
system – contain statistical elements which enable a probabilistic distinction between
relevant and irrelevant parts of the example translation. However, in contrast to SMT,
we use the alignment model exclusively for the analysis of existing translation examples.
Since we do not use the alignment model to generate translations, we can afford to align
words without any restrictions on word order and still do not run into computability
problems.2 The liberal language model we use to model intra-sentential dependencies
does not calculate the probabilty of bags of words, but that of the co-occurrence of two
words regardless of their positions within the sentence. We regard this as a great ad-
vantage, because distortion models as they have been developed in SMT are exclusively
based on word position, which is not a reliable indicator: For example, three words can
be part of a phrase as well as they can make up a complete clause. In our approach, the
generation of new translations is based on translation frames, which are pre-processed
translation examples. This makes it possible to store structural discrepancies locally in
translation examples, thereby avoiding the need for a global model. Further, the use
of translation frames neutralises any alignment to the empty cept. If a word cannot
be aligned directly, it will be aligned indirectly; if it cannot be aligned indirectly, this
word will always end up being aligned to the overall translation frame. We believe our
method capitalises on the strength of both research traditions in this way.

However, so far, the word order problem is not fully solved by translation frames.

2Also consider that our approach only requires to calculate the intra-sentential dependencies for un-
translatable words – not for all words.
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This is because, in this thesis, we have focused on untranslatability as an indicator for
structural discrepancies. In contrast, word order divergences are not captured explicitly.
Since many word order divergence phenomena are also linked to untranslatability, one
might hope that there is enough correlation between the two factors such that word order
divergences are largely covered by our solution to untranslatability. However, there are
a certain number of sentence pairs without untranslatable words, which are still not
1-on-1 translations. An example is the German-Dutch translation of the subclause:

(4.1) “, dass ich die Katze gesehen habe. →, dat ik de kat heb gezien.”

The determination of the crossings in this alignment is a non-trivial task, which we leave
to future work.3

In this thesis, we have presented an approach on the basis of untyped templates. The
expressive power of this model is limited by the fact that a balance must be maintained
between the proportion of words of the sentences that are included in the translation
frame and the proportion of words replaced by variables. If the frame contains too many
words, it will be too specific to match on an unseen input sentences. If the words are
too few, it will no longer be representative and match on too many input sentences.
The use of typed templates would introduce a more sensitive form of generalisation: to
remove the word but still keep the type. While that balance between “representative”
and “general” must be maintained in any case, an “upgrade” to typed templates would
loosen the restriction considerably.

3The general approach we would suggest here, is:

1. Determine the closest non-crossing one-on-one alignment.

2. Compare the alignment from step 1 to the actual word order in the example.
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(chapter III/2)

Dorr, B. J. (1994). Machine translation divergences: a formal description and proposed
solution. Computational Linguistics , 20 (4), 597–633.

Dyvik, H. (2005). Translations as a semantic knowledge source. In Proceedings of the
second baltic conference on human language technologies. Tallinn, Estonia.

Fox, H. (2002). Phrasal cohesion and statistical machine translation. In Proceedings of
conference on empirical methods in natural languag processing (EMNLP).

Fraser, A., & Marcu, D. (2007, June). Getting the structure right for word alignment:
LEAF. In Proceedings of the 2007 joint conference on empirical methods in nat-

96



Bibliography

ural language processing and computational natural language learning (EMNLP-
CoNLL) (pp. 51–60). Prague, Czech Republic.

Groves, D., & Way, A. (2005). Hybrid example-based smt: The best of both worlds?
In Proceedings of the ACL-05 workshop on building and using parallel texts: Data-
driven machine translation and beyond (pp. 183–190). Ann Arbor, USA.

Huang, B., & Knight, K. (2006). Relabeling syntax trees to improve syntax-based
machine translation quality. In Proceedings of the main conference on human
language technology conference of the north american chapter of the association
of computational linguistics (pp. 240–247). Morristown, NJ, USA: Association for
Computational Linguistics.

Hutchins, J. (2005, September). Towards a definition of example-based machine trans-
lation. In Proceedings of workshop on example-based machine translation, MT
summit X (pp. 63–70). Phuket, Thailand.

Kaji, H., Kida, Y., & Morimoto, Y. (1992). Learning translation templates from bilingual
text. In Proceedings of the 14th conference on computational linguistics (Vol. 2,
pp. 672–678). Nantes, France: Association for Computational Linguistics.

Koehn, P. (2004, August). A beam search decoder for phrase-based statistical machine
translation models [Computer software manual]. (User manual and description for
version 1.2.)

Koehn, P., Och, F. J., & Marcu, D. (2003, May). Statistical phrase-based translation.
In Proceedings of HLT-NAACL 2003. Edmonton, Canada.

Lepage, Y. (1998). Solving analogies on words: an algorithm. In Proceedings of the 17th
international conference on computational linguistics (pp. 728–734). Morristown,
NJ, USA: Association for Computational Linguistics.

Lepage, Y. (2005). Translation of sentences by analogy principle. Archives of Control
Science, 15 (4), 585–594.

Lepage, Y., & Denoual, E. (2005a, September). The ’purest’ ever built EBMT system:
No variable, no template, no training, examples, just examples, only examples. In
Proceedings of workshop example-based machine translation, MT summit X (pp.
81–90).

Lepage, Y., & Denoual, E. (2005b, December). Purest ever example-based machine
translation: Detailed presentation and assessment. Machine Translation, 19 (3–4),
251–282.

Lopez, A., & Resnik, P. (2006). Word-based alignment, phrase-based translation: what’s
the link? In Proceedings of the 7th conference of the association for machine
translation in the americas: visions for the future of machine translation (pp.
90–99). Boston, USA.

Mansell, R. (2005). Optimality in translation. In New research in translation and
interpreting studies. Tarragona (Spain).

Marcu, D. (2001). Towards a unified approach to memory- and statistical-based ma-
chine translation. In Proceedings of the 39th annual meeting on association for
computational linguistics (pp. 386–393). Toulouse, France.

97



Bibliography

Marcu, D., & Wong, W. (2002). A phrase-based, joint probability model for statistical
machine translation. In Proceedings of EMNLP (pp. 133–139).

McTait, K. (2001, September). Linguistic knowledge and complexity in an ebmt system
based on translation patterns. In Proceedings of the workshop on ebmt, MT summit
VIII. Santiago de Compostela, Spain.

Nagao, M. (1984). A framework of a mechanical translation between Japanese and
English by analogy principle. In A. Elithorn & R. Banerji (Eds.), Artificial and
human intelligence (chap. 11). NATO.

Nitta, Y. (1986). The idiosyncratic gap: A tough problem to structure-bound machine
translation. In Proceedings of the 11th international conference on computational
linguistics (pp. 107–111).

Och, F. J., & Ney, H. (2000, October). Improved statistical alignment models. In ACL00
(pp. 440–447). Hongkong, China.

Och, F. J., & Ney, H. (2004, December). The alignment template approach to statistical
machine translation. Computational Linguistics , 30 (4), 417–449.

Prince, A., & Smolensky, P. (2002). Optimality theory: Constraint interaction in gen-
erative grammar. Blackwell Publishing. (ROA Version, 8/2002)

Quirk, C., & Menezes, A. (2006). Do we need phrases?: challenging the conventional
wisdom in statistical machine translation. In Proceedings of the main conference on
human language technology conference of the north american chapter of the asso-
ciation of computational linguistics (pp. 9–16). Morristown, NJ, USA: Association
for Computational Linguistics.

Sato, S., & Nagao, M. (1990). Toward memory-based translation. In Proceedings of
the 13th conference on computational linguistics (pp. 247–252). Morristown, NJ,
USA: Association for Computational Linguistics.

Schuch, A. (2008, July). The usage of the particle ba in man-
darin chinese: A computational corpus analysis. Available from
http://student.science.uva.nl/~aschuch/ChineseBA ASchuch.pdf

Simard, M., Cancedda, N., Cavestro, B., Dymetman, M., Gaussier, E., Goutte, C., et al.
(2005, October). Translating with non-contiguous phrases. In Proceedings of the
human language technology conference conference on empirical methods in natural
language processing (HLT/EMNLP 2005). Vancouver, B.C., Canada.

Somers, H. (1999). Review article: Example-based machine translation. Machine
Translation, 14 , 113 – 157.

Somers, H. (2001, September). EBMT seen as case-based reasoning. In Workshop on
example-based machine translation, MT summit VIII. Santiago de Compostela,
Spain.

Sumita, E., & Iida, H. (1991). Experiments and prospects of example-based machine
translation. In Proceedings of the 29th annual meeting on association for compu-
tational linguistics (pp. 185–192). Morristown, NJ, USA.

Tinsley, J., Hearne, M., & Way, A. (2007). Exploiting Parallel Treebanks to Improve
Phrase-Based Statistical Machine Translation. In Proceedings of treebanks and

98



Bibliography

linguistic theories (TLT ’07). Bergen, Norway.
Turcato, D., & Popowich, F. (2001, September). What is example-based machine

translation? In Proceedings of the workshop on example-based machine translation,
MT summit VIII (pp. 18–22). Santiago de Compostela, Spain.

Watanabe, T., & Sumita, E. (2003, September). Example-based decoding for statistical
machine translation. In Proceedings of MT summit IX. New Orleans, USA.

Way, A., & Gough, N. (2005, September). Comparing example-based and statistical
machine translation. Natural Language Engineering , 11 (3), 295 – 309.

Weaver, W. (1949, July). Translation. In W. N. Locke & A. D. Booth (Eds.), Machine
translation of languages: fourteen essays (pp. 15–23). Technology Press of the
Massachusetts Institute of Technology.

Yamada, K., & Knight, K. (2001, July). A syntax-based statistical translation model.
In Proceedings of the 39th annual meeting of the association of computational lin-
guistics (ACL’01) (pp. 6–11). Toulouse, France.

Ziegler, C. (2008, November). Rosetta statt Babel – Hauptströmungen der maschinellen
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