
Regular Treebank Generalisation

Isaac Sijaranamual

August 19, 2007

1

2

©FromTheDawnOfTime–Oblivion by Isaac Sijaranamual.

CONTENTS

CONTENTS I

PREFACE III

INTRODUCTION V

Overview vii

1 BACKGROUND 1
1.1 Computational Linguistics 1
1.2 Corpora and Annotation 2
1.3 Parsing 5
1.4 Parse Evaluation 7

2 PROBLEM STATEMENT 11
2.1 Previous Work 11

3 METHODOLOGY 19
3.1 Notation 19
3.2 Data Split 22
3.3 Data Preprocessing 23
3.4 Parsing 27
3.5 Post-processing 28
3.6 Evaluation 29

4 RESULTS 31
4.1 Overall 31
4.2 Unseen Rules 31

5 CONCLUSION 33
5.1 Revisiting Thesis Statement 33

i

ii Contents

BIBLIOGRAPHY 35

PREFACE

In fulfilment of my doctorandus.
I will not perpetuate the use of ‘we’ in, what is supposed to be, an original piece

of work by a single person. And no, it does not ‘make it look more scientific.’

iii

INTRODUCTION

A longstanding goal since the inception of computers, is for the machine to be
able to comprehend language in a way we humans do. What seems like a simple
thing for most of us turns out to be a hard problem to solve. So hard in fact that it
still has not been solved. This fact is not that surprising given the fact that it is still
poorly understood how humans process language. Indeed, language is perceived
to be a direct reflection of the mind that produces it. As capable as we are when
it comes to using language, so incapable are we at expressing how we do it. It is
something that happens automatically. We only become aware of this fact once we
try to explain it to someone else, or to a computer.

If we are to instruct these machines how to deal with or to process language
then it would be a good start to understand what it is we are trying to explain. As
is common when scientists try to understand a phenomenon, they try to take it
apart and try to study the parts in isolation. Linguistics, the study of language, is
no different. And as with any research field it is wide and varied, but too broad for
a single person, to treat within the confines of a thesis. Therefore I will restrict my
attention to the description and understanding of grammar. Or more precise, the
syntax of natural language.

As noted as early as the beginning of last century, a peculiar property of the
aspect of language, the words, manifests itself. If you count the occurrences of all
words, and plot the logarithm of the frequency against the logarithm of the rank of
each word then there is an approximate linear relationship between the two. This
is know as the Zipf or power law.∗ He discovered that in normal language there
are a few very common words and a whole lot of infrequent ones,unique word
occurrences typically make up at least half of the all different word types. What
this means is that one is bound to encounter new words in any significant piece
of new, non-trivial, text. No matter how much text one has seen.

An even stranger fact is that this does not only happen at word level, but also at
the level of syntactic structure. The types of sentence structures one encounters

∗named after Zipf for his treatise in Zipf [1932], but earlier references go back as far as Estoup
[1916]

v

vi INTRODUCTION

also exhibit this long tailed distribution that governs the distribution of the words.
This fact was noted by Sampson [1987].

-10

-8

-6

-4

-2

0

2

4

6

8

10

0 2 4 6 8 10 12
Figure 1: Log-log plot of smoothed count of counts of PCFG rules extracted from
WSJ sections 02–21. Of the 14981 grammar rule types, 8610 (that is approximately
57%) occur only once.

How can we make sense of these boundless collections of things? For the words
the answer usually boils down to lexical similarity (word form) or context (syntac-
tic/semantic role). We tend to assign meaning, however vague, to new unknown
words based on similarity to those that we do know. This similarity can manifest
itself in the literal similarity or the context in which it appears. At least we assume
that they share a meaning because they are somehow ‘similar’. But what about the
syntactic rules? Do they also have some notion of similarity? I will argue that they
do.

The similarity of the rules will be based solely on their internal structure. I will
treat these rules as simple sequences of symbols. A notion of similarity of rules
can then be based on that of similarity between lists or sequences of symbols.

A simple measure of similarity between sequences is the n-gram or Markov
models. The n-gram models are models that count all subsequences of n consec-
utive symbols in a sequence. These counts can be used to directly define similarity
between two sequences, simply count how often n-grams from one occur in the
other. Or indirectly, in which case the n-grams are used to define (conditional)
probabilities with respect to a sequence. This probability can then assign proba-

OVERVIEW vii

bilities to other sequences and in effect measure the similarity between them.
Assume that we have extracted set of rules from a sample of language. If we

take another sample of that same language, we expect to see a lot of rules we had
already seen in our first sample, but also a significant set of new rules. After all
it is extremely unlikely that our first sample was complete with respect to that
language. This means that analysing the new sample with the old rules would
give a markedly different result than analysing it anew. It turns out this keeps
happening each time you take a new sample of the language. Assuming that there
is indeed structure in the language we can capture, we seem to be missing it. It
would be nice if we could infer the right structure from the sample(s) we do have.

This brings us back to the similarity between rules, for most of the rules of the
old sample will occur in the new sample, and the new rules that we had not seen
before usually resemble one or more old ones.

Because of their simplicity and good performance, n-grams are ubiquitous in
computational linguistics. The idea is so simple that it is too tempting to try to
improve on.

This thesis will look at the extension of then-grams, the finite state machines, to
see how much we can gain by using a more powerful model to describe sequences.

Very well, thesis statement(s):
1. How can we sensibly generalise treebank grammars?
2. Can we escape the clutches of the omnipresent n-grams?

OVERVIEW

The thesis is divided as follows. In chapter two I will describe previous work,
outlining the various parsers and identify their shortcomings. The next chapter
deals with grammar inference. Chapter four treats in detail the models I devised,
with the results in the following chapter. And the final chapters wraps up the
discussion and provides pointers for future research.

1 BACKGROUND

This chapter provides an overview of the field of computational linguistics and
where this thesis fits in.

1.1 COMPUTATIONAL LINGUISTICS

The aim of computational linguistics is to find models of natural language, spec-
ified in enough detail such that it can be run by a computer. The models can be
based on one’s own intuition or on that of a linguist.∗ Once such a model has been
formulated it should be critically inspected, implemented and suitably tested.

As with any scientific endeavour, if the results of the test indicate that the orig-
inal model is significantly deficient in any way (shape or form), it can be refined
and tested until it satisfactorily explains the language of interest.

The syntactic analysis of a sentence structure is known as parsing. Parsing
sentences, or more generally any text, requires that we have a systematic way of
describing that structure. The grammar of a language describes how the separate
parts, usually words, fit together to form the constructs that we in our daily lives
recognise as language.

This seems straightforward enough at first sight, but the apparent simplicity is
deceptive. Notwithstanding the long history of people trying to come to a compre-
hensive description of language, any language, all have failed to varying degrees.

For example, most of the structure of the English language is described by a suc-
cinct context free grammar, but there are always examples, utterances that elude
any such given grammar. This has driven linguists both away from and beyond
these grammars. It is still unknown whether natural language even has a ‘proper’
grammar. In any case it has proven useful to have, and use, even crude grammars
for any given language.

Current day natural language processing has seen the (successful) convergence
of both the formal grammar and statistical methods. The basic idea is to take the

∗The present author does not consider himself to be one.

1

2 CHAPTER 1. BACKGROUND

crude, sloppy grammars, and refine them by appropriately assigning probabilities
to its rules. These probabilities can encode a subjective a priori notion of confi-
dence in a given part of the grammar, or it can be used to describe a usage pattern
in a sample of the language.

There are two obvious ways of obtaining a grammar, one is by explicit specifi-
cation and the other by ‘manual parsing’. The former method generally produces
small, simple and understandable grammars. But these grammars have a ten-
dency to be too restrictive, that is, they cannot assign a consistent structure to
arbitrary text. The grammars produced by the latter method tend to be of an ad
hoc nature, causing them to be larger and messier. The upside is that they are
better capable of handling new, unseen, text.

A major part of the differences between the two is due to their redundancy.
Grammarians usually try their best to create frugal grammar(s). Ideally everything
expressible by the grammar can be expressed in one way and one way only. Clearly,
small and simple systems are more easily analysed and reasoned about. Whereas
the implicitly defined grammars produced by a manual parse of a text will have a
multitude of ways to analyse the same sentence.

Different analyses of the same sentence might not be desirable, and even if they
are, then they might not be equally likely. Sentences with different meanings have
different internal structure. The converse is mostly true: sentences with a different
internal structure tend to have a different meaning. The problem is that this can
happen even when two sentences are identical at the word level, see figure 1.1.
This gives rise to (one aspect of) the well known ambiguity of natural language.

By using the statistics gathered for the language, we can put a number, a prob-
ability, on the different analyses. In essence it allows us to disambiguate via struc-
tural preference. It is unlikely that simply plugging the numbers will provide the
acuity to correctly resolve all these ambiguities, but it does provide a powerful tool.

Statistics can only be calculated for a suitable collection of text. These collec-
tions, or corpora, are a selective subset of the language one would want to study
and are the subject of the next section.

1.2 CORPORA AND ANNOTATION

Once a language sample has been collected, it can be analysed and annotated.
I shall restrict this discussion to the syntactic annotation scheme used in the
Penn Treebank (PTB) corpus. Or specifically a restricted subset of that annota-
tion scheme.

At the lowest level we have the so-called parts-of-speech, or POStags. A simpli-
fied tag set can be seen in table 1.1. The actual set of tags used in the PTB has a

1.2. CORPORA AND ANNOTATION 3

S −→ NP VP
NP −→ N
NP −→ N PP
VP −→ V NP
PP −→ . . .

S

NP

N

John

VP

V

sees

NP

N

Mary

PP

with a telescope
S −→ NP VP
NP −→ N
VP −→ V NP PP
PP −→ . . .

S

NP

N

John

VP

V

sees

NP

N

Mary

PP

with a telescope

Figure 1.1: Syntactic ambiguity for “John sees Mary with a telescope”. Two differ-
ent parsetrees, both with different meanings

total of 72 tags; 45 POStags and 27 syntactic categories.† If the specificity of the
tags is too coarse, we might miss valuable information, too fine and it becomes
unwieldy.

Annotating a text with parts of speech is a reasonably simple job.‡

The next step up in terms of (linguistic) expressiveness is annotating the text
with chunks, grouping consecutive words together in single units. This chunking
process is also known as shallow parsing. The typical process is to identify con-
stituent phrases in a sentence, like noun- and prepositional phrases, and marking
them as such. This introduces a new set of tags, syntactic tags or syntags. The
big benefit of chunking is that it is still a relatively simple process. No nesting or
overlapping of chunks is allowed, this is what sets it apart from the next step.

†All versions of the different documents supplied with the PTBv2 CD give different counts. The
numbers reported are the ones in the dataset that I used.
‡Simple in the meaning that once the set of POS tags is fixed, per-annotator and inter annotator

disagreement is very low. Furthermore it is very easy to write a computer program to get a tagging
score upwards of 90% precision (accuracy?).

4 CHAPTER 1. BACKGROUND

Table 1.1: A simple set of parts-of-speech.

VB verb
N noun
DT determiner
JJ adjective
RB adverb
CC conjunction
UH interjection

In full parsing, or structural analysis of sentences, ‘chunks’ can be arbitrarily
nested.§ The number and type of tags to be used in the structural analysis is
still unknown. It may range from a handful to well into the hundreds (or even
thousands).

Table 1.2: English corpora

name created period size
(Mwords)

description

Brown 1967 1961 1 American English, created by
Kucera and Francis; described
in Computational Analysis
of Present-Day American En-
glish (1967)

BNC 1991–1994 late 20th 100 designed to represent a wide
cross-section of British En-
glish from the later part of the
20th century, both spoken and
written

PTB 1989–1992 1991 5 full PTB includes the Brown,
see 1.3

The prime object of interest for this thesis will be the Penn Treebank (PTB). Or
more specifically, the Wall Street Journal (WSJ) subsection. A small overview of
the Penn Treebank is shown in table 1.3.

The reason that I use the WSJ is simple, it is the de facto standard in the parsing
community. It was one of the first large, syntactically annotated corpora available.

§but they may not overlap one another, i.e., one constituent may either completely contain another
or be completely disjoint with it

1.3. PARSING 5

Table 1.3: Penn Treebank in detail, taken from [Marcus et al., 1994]

Description annotation

POS (Tokens) parsed (Tokens)

Dept. of Energy abstracts 231,404 231,404
Dow Jones Newswire stories 3,065,776 1,061,166
Dept. of Agriculture bulletins 78,555 78,555
Library of America texts 105,652 105,652
MUC-3 messages 111,828 111,828
IBM Manual sentences 89,121 89,121
WBUR radio transcripts 11,589 11,589
ATIS sentences 19,832 19,832
Brown Corpus, retagged 1,172,041 1,172,041

Total: 4,885,798 2,881,188

Having a standard corpus to train, test and validate on has been a great boon to
the parsing community. Since the dataset used by everyone is identical, results
can be compared directly and any difference in the results is a direct consequence
of the particular method used and not due to some difference in the data. But
this also creates its own set of problems, as the parsers start getting better, the
improvements start getting smaller and smaller, to the point where one has to ask
the question to what extent these numbers are still meaningful. I want to point out
that the start of this chapter stated that we were interested in constructing models
of language (English) and not models of mid-nineties Wall Street Journal articles.
Alas, this is a problem, but one well outside the scope of this thesis.

1.3 PARSING

The basis for the models in this thesis is a simple PCFG which is extracted from
the treebank. As described in Charniak [1996] this model performed significantly
better than was commonly believed at the time. This belief was based on the
experience of the poor performance of handcrafted grammars. Couple this to
limited computing power and the immense size of the treebank grammar, had led
many to disregard the possible utility of treebank grammars.

Around the same time Collins published the results obtained with his depen-
dency parser. In [Collins, 1996] he describes his parser, which is based on the
bilexical dependencies between head and modifier words. The dependencies are
further specialised by defining a ternary relation over the phrasal categories (syn-
tags)of the constituents of both words and the category that the dependency in

6 CHAPTER 1. BACKGROUND

question is part of (this also allows him to reconstruct the original parsetree). As
a final addition he adds the ‘distance’ between the lexical items. The author de-
scribes the necessity of smoothing to overcome the data sparsity that conditioning
on such large and specific context entails.

Better results still, but at the cost of a more complex parsing model, have been
reported by Collins [1999]. In his dissertation he expands his earlier model from
1996 by adding (among other things) a regular PCFG grammar, a zeroth order
Markov model to generate the rules of that grammar,¶ subcategorisation frames,
and most importantly, more sophisticated smoothing to deal with the significantly
increased context on which he conditions.

Earlier work by Magerman, his SPATTER parser [Magerman, 1995], works by
constructing a decision tree to classify each word and its relation to other words.

The fact that both the SPATTER parser from Magerman and Collins’ parser
were lexicalised and outperformed the simple, unlexicalised, treebank grammar
led researchers to believe that lexicalisation (both head lexicalisation and the bilex-
ical dependencies) is of vital importance to parsing. But more detailed analyses of
the effects of various enhancements of parsing models, among which the head-
and dependency lexicalisation, by various researchers [Bikel, 2004, Gildea, 2001]
show that their effects are small and in the case of bilexical dependencies even
corpus specific.

The main reason that Collins’s model is able to perform so well is because it
is capable to make very fine distinctions over the similar-but-different instances
of syntactic tags, through the system of conditioning on both the heads and the
subcategorisation frames. This enables him to differentiate the subtle nuances of
the differences in usage even within the same wordclass. Therefore considerable
effort is put into smoothing, primarily via back-off to coarser models.

A different approach has been the work of Johnson [1998], who has also put con-
siderable effort in investigating the relationship between treebank annotation(s)
and PCFG parsers. He examines various tree transforms: increasing the depth of
the flat noun- and verb phrases (making the grammar more regular, but increas-
ing the independence), flattening recursive noun- and verb phrases (the opposite
effect) as well as parent annotation (adding the tag of the parent of each node to
the node itself thereby increasing specificity of the symbols).

This has been used to great effect by Klein and Manning [2003], who reach
levels of performance with their unlexicalised parser comparable to the best early
lexicalised parsers. The basics of which is Markovising not only over grammar
rules, but also over node ancestry, where Johnson only considered the parent node,
they also condition on the grandparents. In addition to that they also did semi-

¶which is odd, since English has a relatively strict word order, exactly something that low (zeroth)
order Markov models are not capable of capturing.

1.4. PARSE EVALUATION 7

automatic symbol splitting, again creating more specialised symbols.
Petrov et al. [2006] take this a step further and manage to have their unlexi-

calised parser outperform all other published parsers.
A different approach has been taken by Eisner in his PhD thesis, [Eisner, 2001].

His transformation model extracts flat PCFG rules, with he head of the rule re-
placed by the lexical item it represents. He then constructs a graph where each
rule is connected to its edit distance-1 neighbours. A weight is associated with
each type of edge, where the types are: insertion, deletion and substitution‖ and
thus with each of these edges.

1.4 PARSE EVALUATION

In parsing text the aim is to give a reasonable analysis of the input text most of the
time. Once that goal has been reached, the requirements quickly shift to always
giving reasonable analysis, but also a correct one most of the time. The notion of
reasonable and correct depends on the domain in which the system is used and
the ultimate goal one has envisioned. For instance, for the task of information
retrieval, one is mostly interested in discerning nouns and verbs, or the slightly
more complex task of named entity recognition to be able to return a set of rel-
evant documents. Similarly simple language models can be employed by speech
recognition engines. For more taxing problems like question-answering (related
to information retrieval, but instead of returning a set of relevant documents, Q&A
systems try to answer the query phrase the user entered) or machine translation a
more detailed analysis is needed to be of any help.

While evident, this does pose a big problem, namely, that of evaluation. How do
we compare one parse against the other? Before the widespread use of treebank
parsing (and quite a while after their they had shown their use/value), the only
grammars were handcrafted. Linguists sat down and wrote up these complex rule
sets, describing to the best of their abilities the structure of their language. This
puts the burden of deciding what is and is not correct solely on the creator(s) of
the grammar. This is a reasonable and clear-cut solution, so why abandon this
approach?

Although the handcrafted grammars are considered to be of high quality, cre-
ating them is time-consuming and the result is very fragile. They tend to break
down when applied to realistic, i.e., real world data. This is either due to unfore-
seen combinations of sentence constructions or even ‘incorrect’ language usage.∗∗

‖but also any of the more specific transformations: insertion/deletion/substitution of syntags by
class and i/d/s of lexical items.
∗∗incorrect with respect to some idealised grammar, which is usually also specified by linguists.

8 CHAPTER 1. BACKGROUND

Since most people prefer a partially correct answer to no answer at all, people
have looked to other solutions, one that still uses the familiar notion of grammar,
but which does not have the drawbacks of the hand built ones. From the em-
piricist’s point of view correctness of natural language is determined by its usage.
There is only a small set of basic rules for each language, the details of which shift
over time.

Corpus based approaches to natural language processing fit neatly into this em-
pirical framework. The annotators of the corpus mark up sample sentences based
on an implicit grammar. Even though producing a consistent annotation over
the entire group of annotators is a hard problem (the PTB annotation manual is
a couple of hundred pages), it turns out to be easier than creating handcrafted
grammars.

With this treebank at hand, parsing now becomes an instance of supervised
machine learning. The machine needs to learn what we humans consider to be
the structure of language. And it does so by being provided with a large set of
examples of ‘correct answers’ (desirable would probably be a better word.)

But this reintroduces the problem of evaluating parse performance. The most
obvious solution, and the one used in supervised machine learning, is to declare
the example set as the one true answer, the ‘gold standard’. Parsers can then be
rated on their ability to match whatever examples it is given. This is the intrinsic
performance of parsers. If the score attained by the parser is 100% then there
is no question, it is doing at least as good as the human who annotated the data
would do. But what if the parser is unable to deliver a perfect score each and every
time?

This is where the extrinsic comes in. In the extrinsic evaluation of parsers one
is not interested of the score of the parser in isolation, but as part of a larger sys-
tem, for instance a document analysis system. In that case alterations to the pars-
ing subsystem are evaluated by scoring the document analysis system as a whole.
This, inevitably, gives better results because improvements in whatever score is
used, directly benefit the entire system and is the measure one is usually inter-
ested in (unless you are a computational linguist, creating and studying parsers
for the sake of it). The downside of extrinsic evaluation is that it can be too hard
(too many variables) or just computationally intensive.

To this end, researchers have proposed various evaluation scores to do intrinsic
performance evaluation. By far the most pervasive when it comes to parse evalua-
tion is PARSEVAL, described in Black et al. [1991]. This metric is actually a set of
related metrics, all of which depend directly on the tree structure or brackets. The
most interesting quantities it encompasses are:
LABELLED RECALL the number of (labelled) parentheses in the gold standard that

are matched by the proposed parse, divided by the total number of paren-
theses in the gold standard.

1.4. PARSE EVALUATION 9

LABELLED PRECISION the number of (labelled) parentheses in the proposed parse
that match the parentheses in the gold standard divided by the total number
of parentheses in the proposed parse.

CROSSING BRACKETS The number of constituent boundary violations.
Furthermore, a common derived quantity is the FMeasure, which is the harmonic
(unweighted) mean of the recall and the precision.

The aim for the PARSEVAL metric was to provide a single unified set of mea-
sures to evaluate a wide variety of grammatical formalisms, be it phrase structures
or dependency grammars. It can even be applied to both stochastic and symbolic
parsers.

2 PROBLEM STATEMENT

In this chapter will explicate the deficiencies of the standard treebank grammar
and propose a solution.

2.1 PREVIOUS WORK

In his paper on treebank grammars [Charniak, 1996], Charniak proposes five
main reasons for the suboptimal performance of the raw treebank PCFG. They
are, not having the correct rules, having the right rules but not the right probabil-
ities, insufficient information in the POStag sequence (no lexicalisation), insuffi-
cient time/memory to consider all parses and finally an incorrect gold standard.

To test the effects of points one and two he runs the same test, but with the
same set for both testing and training. The results of those tests show that having
the correct rules and with the correct probabilities have a minor effect on the re-
call, but a much bigger effect on the precision. Labelled recall goes from 80.4%
to 81.8%, a 7.1% error reduction and labelled precision from 78.8% to 83.3%, a
21.2% error reduction. He calls it ‘an interesting question’ why the results for the
two measures differ that much. But he also claims that the big gains will most
likely not come from making (incremental) improvements to the basic method,
instead a productive (find another word) avenue of research would be the incor-
poration of lexical information. A fact supported by the significantly better results
obtained by the lexical decision tree parser SPATTER, [Magerman, 1995], which
attains 85LP/84LR.

TREEBANK WOES

As we have already seen in the previous chapter, the treebank grammar performs
reasonably well as-is (based on the work by Charniak [1996]). But in the same
paper a couple of limitations were highlighted. The limitations can be attributed
to a couple of factors.

11

12 CHAPTER 2. PROBLEM STATEMENT

The most obvious one being the inadequacy of PCFG models in general to cap-
ture the complex structural interdependencies of natural language. Some of the
more powerful formalisms that have been proposed, and used, to address this
problem are DOP [Scha, 1990], TAG, CCG, LFG. Although interesting lines of
research, the scope of this thesis will remain focused on the PCFG formalism.

The other factor is the heavy influence of the details of the annotation style used
to construct the treebank. In the Penn Treebank, the annotators chose to prefer a
flatter style of tree annotation. The choice was heavily influenced by the ability of
the annotators to chose between different representations. The non-choice of not
using deeper, more nested, structure was a pragmatic neccesity with the limited
(human) resources. The flatness of the rules has both beneficial and detrimental
effects on the performance of simple PCFG parsers.

The beneficial effect is that by flattening the structure you remove structure
which would have been missed by the PCFG due to its context-free independence
assumption. The detrimental side effect of this is that it introduces a lot of new
rules for all the flattened structure(s). Whereas in the non-flattened case the PCFG
parser might have (over-)generalised, it now fails to identify similar –but non-
identical– structures.

To overcome these deficiencies, and to thus attain better performance, it is
necessary to change the underlying model. This may mean dispensing with the
PCFGs all together, or by increasing its sensitivity to structural information. An-
other option would be to change (improve) the annotation you start with. This
might seem like a stop-gap measure, or even ‘cheating’, one does after all change
the problem definition, but this transformation step is usually performed trans-
parently. What I mean by that is that the input and outputs to the parser remain
the same, and hence it is evaluated on a ‘compatible’ domain. This can be under-
stood to be a conversion layer, which sits between the parser and its surroundings.
In this way we allow the parser to work with a much richer annotation, which it
can then use to make better informed decisions. Finally the output of the parser
(with the rich notation) is mapper back to the original form.

The final problem, and main subject of this thesis, has already been hinted at,
but will now be made explicit. Since the treebank is a sample of English, it is
subject to the same problems that govern all samples, statistical noise. It is clear
that a poor approximation to the distribution of English (structures) will result in
bad, or even outright wrong analyses of English sentences. A fact made worse by
the abovementioned relatively flat rule annotation.

I consider the set of rules to be a representative sample of a simple language. I
will therefore tackle the problem by using stochastic language inference. This is a
well studied field so I do not expect any insurmountable problems to crop up.

In what follows I treat two methods. The first are the Markov models, what they
are, how they are used and what their shortcomings are. The second method is

2.1. PREVIOUS WORK 13

that of regular language inference, what it does and how it solves the problems
that the Markov models have.

MARKOV MODELS

The first method, the Markov models, are not so much a method of language
inference as they are a method to describe the statistical properties of sequences
of symbols. These sequences can be the letters of words, the words of a sentence,
or as in our case, sequences of abstract symbols.

Since we are dealing with English, and due to the structure of English, once we
know that we are currently looking at, say, a noun phrase, this greatly cuts down
the possibilities of which tags can occur. Not only which tags can occur, but due to
the strict word order of English, also in what order. A non-recursive noun phrase
is likely to start with a determiner, and knowing that the previous symbol was a
determiner increases the probability of a noun and makes any kind of punctuation
highly unlikely. This is exactly what a first order Markov model does.

These ‘rules’ differ per constituent, but the important fact is that such regularity
is present regardless. And as such it can, and should, be exploited. Now, to acquire
these rules, all one has to do is to extract and count them. Once these statistics
have been collected, these can be used to assign probabilities to rules in a manner
similar to that of assigning probabilities to rules directly (by relative frequency).
So instead of calculating the probability of rule L −→ R as

pRF(L −→ R) = c(L −→ R)/
∑
i

c(L −→ Ri)

instead use
pbigram(L −→ R) =

∏
ri∈R

p(ri|ri−1)

for all (pairs of) symbols in the rhs R of the rule. A full treatment and accompany-
ing notation, is given in section 3.1.

An example. If we take a small subset, on the order of one tenth, of the corpus
and use that to calculate the rule frequencies for the entire corpus, we get the
following numbers. For the relative frequency- and the bigram estimate for the
rule which rewrites a noun phrase as a determiner and a noun, NP −→ DT NN:

pRF(NP −→ DT NN) = c(NP −→ DT NN)/
∑
i

c(NP −→ rhsi))

= 2944/31369

≈ 9.385 · 10−2

14 CHAPTER 2. PROBLEM STATEMENT

and the bigram probability,

pbigram(NP −→ DT NN) =
c(DT |start)
c(start)

· c(NN|DT)

c(DT)
· c(stop|NN)

c(NN)

≈ 6.766 · 10−2

where the counts are only the counts collected from the noun phrases. We can see
that the probability of the rule has been reduced significantly (as it happens this
rule is actually the second most common one for noun phrases, only surpassed by
the recursive NP −→ NP PP). This immediately highlights the drawback of using a
first order Markov model, it is way too permissive. In accepting new rules, it takes
away too much of the probability of the events it has seen (for the entire corpus
the relative frequency estimate of the rule NP −→ DT NN is 9.371 · 10−2). Increas-
ing the model by a single order produces a significantly better estimate, but this
introduces new problems, both a consequence of the increase in the number of
free parameters of this larger model. Parameters which have tob e estimated from
the data. The more data you have, the better the estimate. But if you cannot (eas-
ily) increase the amount of data you will have to make do with a simpler model,
otherwise the estimates will be inaccurate with respect to the real probability dis-
tribution.

The usual solution to this problem is to construct all Markov models up to a
fixed order, say three, and combining the probabilities of all these models. Com-
bining these models can be as simple as using a fixed factor per order, or more
complex, adjusting the factor relative to the evidence one has (even within a single
order not all contexts occur with equal probability). These complex interpolation
schemes produce very accurate estimates for the probabilities, but still have the
large number of parameters.

Since I will be using the model as a generative one, the large number of param-
eters of a smoothed model would become a problem. The models will therefore
not be smoothed (in the hoope that it will not be detrimental to the ultimate goal
of parsing.)

BREAKING THE RULES

It should be clear that breaking up the flat rules of the treebank grammar is of
considerable importance for both the estimation of rule probabilities as well as
the coverage of the grammar. As has already been noted, increasing the tag set
(making each more specific) and/or flattening the rules increases the need to do
smoothing.

For the first problem any kind of (statistical) estimation or smoothing method
could in principle be used. But the downside is that that leaves the second problem
untouched.

2.1. PREVIOUS WORK 15

The idea then is, is it possible to generate these, new, unseen grammar rules
whilst smoothing out the occurrences of the ones we have seen?

The often used Markov models are one way of accomplishing exactly this. Not
only do they smooth out the probabilities, but they also allow for new rules to be
generated. The new rules are also types which resemble the ones we have already
encountered before. So they solve both problems, albeit in a crude way, but they
are simple, both conceptually as well as computationally. Training or estimating
them from data is almost trivial, it is a simple matter of counting. By assigning
different probabilities to events in a sequence based on the context of each symbol
they allow the bigger joint probabilities to be broken up.

Since Markov models have a fixed context size, which is to be determined be-
forehand, this puts a burden on the implementer to decide which context size to
use. Too small a value and you (might) miss important correlations between sym-
bols further apart. Too large and you run into data sparsity problems, putting us
right back at square one.

The usual solution to this problem is to smooth over various orders of Markov
models of different order. Indeed, most smoothing methods used in natural lan-
guage processing find their origin in ideas thought up to improve the basic Markov
models. This is not, however, the most efficient solution. Since the number of
parameters that must be estimated increases exponentially with the order of the
model.

Therefore I propose to use the more expressive family of regular languages to
overcome these problems. The regular languages are a proper superset of the
Markov models and while retaining their efficiency.

STOCHASTIC REGULAR LANGUAGE INFERENCE

Various methods have been devised to do regular language inference, or identifi-
cation. They all follow the general procedure of acquiring a sample, assuming a
specific model class (in this is case regular grammars) and finally trying to identify
that model as best as possible, if it is even possible at all. The multitude of meth-
ods devised for the identification of regular languages can be attributed to two
points, they are a simple formalism and as such can be efficiently implemented.
And, equally important, the negative result of Gold [1967]. Which shows that it is
impossible to learn regular grammars from positive data alone.

Since the main goal of this thesis is to be able to out do Markov models, it
would be nice if the inference algorithm is at least capable of capturing the same
structure as the Markov models. This rules out acyclic models, such as the k-
reversible languages of Angluin [1982].

The SFSM inference algorithm that i have used is a state merging algorithm.
In particular the MDI algorithm devised by Thollard et al. [2000], which itself

16 CHAPTER 2. PROBLEM STATEMENT

is based on the ALERGIA algorithm of Carrasco Jiménez and Oncina Carratalá
[1994, 1999]. Both algorithms work according to the same basic principle: 1)
build a PTA from the sample set, 2) for all pairs of states, test their compatibility
(stochastic equivalence) and, 3) merge if compatible and 4) repeat from 2. The
merge order used (step 2) is of dire importance since it ultimately determines
which states get tested for compatibility. The ALERGIA merge order (and also
that of the MDI) is defined as follows: associate with each state of the PTA the
(shortest) prefix that ends in that state. The states are then numbered according to
the lexicographic ordering of their prefix strings. Other orderings are also possible,
most notably the data- and evidence driven orderings.

What sets the two algorithms apart is the compatibility criterion that they use.
ALERGIA assumes a Bernoulli distribution for each labelled outgoing edge (arc?).
Compatibility is rejected if the confidence ranges between two states do not overlap
for each symbol (label?) w.r.t. a pre-specified α.

This compatibility criterion is deficient in three ways. First, the Hoeffding
bound is an asymptotic bound, and as such might be wholly inappropriate for fi-
nite (small) samples. Second, the outgoing labelled edges are tested independently
of each other. And third, the prefix probability, or probability mass associated with
the state is not taken into account.

The MDI algorithm on the other hand bases its compatibility test on the Kullback-
Leibler divergence between pre- and post-merge automata. More precisely, com-
patibility is rejected if the ratio of the KL divergence increment and size decrement
between pre- and post-merge automata is below the algorithm precision parame-
ter. It is important to note that the KL divergence is between the p.d.f. over strings
for both automata, not between the ‘next symbol’ p.d.f. of the merge candidates.
This makes the MDI test a global compatibility test, as opposed to the local test of
ALERGIA.

MAlergia [Kermorvant and Dupont, 2002], a variant of ALERGIA, also addresses
these deficiencies, but does so with a local compatibility test. The Hoeffding
bound is replaced with a multinomial test and a Fisher exact test is used when
the amount of data is insufficient to validate the multinomial test.

EXPECTATIONS

The results that I expect are that breaking up the PCFG rules, by either of above-
mentioned methods, will have a beneficial effect on the parse performance of the
resulting generalised grammar. To avoid having to do a full parse run to evalu-
ate any changes applied during the experiments I will use the perplexity of both
models on a held-out data set.

There are three points that will be considered a (minor) succes (each):
1. improved parse performance of the SFSM inferred grammar

2.1. PREVIOUS WORK 17

2. lower perplexity of the SFSM model with respect to the n-gram model on
the held out data for an equal amount of rules.

3. lower number of rules of the SFSM model for a similar level of perplexity
experiment setup and notation will be described in the next chapter.

3 METHODOLOGY

This chapter will give a more detailed description of the methods used.

3.1 NOTATION

MARKOV

The probability of a sequence of symbols wn1 , with wi ∈ T for 1 ≤ i < n and
wn = stop, stop 6∈ T , is given by the product of the conditional probabilities of all
the individual symbols:

P(wn1) = P(w1) ·
n∏
i=2

P(wi|w
i−1
1). (3.1)

the probability of a symbol wi is conditioned on the entire history wi−11 that pre-
cedes it. Making the assumption that the dependence of a word on symbols further
back in its history is of such insignificance that it is negligible,

P(wi) ≈ P(wi|wi−1i−k) (3.2)

leads to the conditional probability model known as a Markov model of order k:

P(wn1) = P(w1) ·
k∏
i=2

P(w1|w
k−1
1) ·

n∏
i=k+1

P(wi|w
i−1
1). (3.3)

Where the (now reduced) conditional probabilities are estimated by the empirical
distribution. The empirical distribution, is the relative frequency estimate given a
large sample

P(wi|w
i−1
i−k) =

P(wi−11−kwi)∑
wi

i−k
wii−k

=
P(wi−11−kwi)

P(wi−11−k)
. (3.4)

This is no different for the rules of the treebank grammar.

19

20 CHAPTER 3. METHODOLOGY

STOCHASTIC DETERMINISTIC FINITE AUTOMATA

A stochastic deterministic finite automata M is a tuple (Q, T, qs, δ, p). The set T
is the set of symbols, Q is the set of states, the transition function δ : Q× T → Q

maps state, symbol pairs to states and finally the probability function p : Q× T ∪
{stop} → [0, 1]. For a ∈ T the probability function p(q, a) is zero if δ(q, a) is
undefined, p(q, stop) =

∑
a∈T 1− p(q, a) for all q.

The probability of a sequence of symbols wn1 given the automata is the proba-
bility of the path through the automaton,

P(wn1) =

n∏
i=1

p(qi, wi) · p(qn, stop) (3.5)

with the additional restriction that q1 = qs. P(wn1) is zero if there is no such path.
In this work the probabilities assigned by p will also be derived from the relative

frequencies. The counts are collected as follows. For an input sample I construct
the weighted automaton known as the prefix tree acceptor. A weighted automa-
ton is similar to the stochastic automaton, with the exception that the probability
function p is replaced by a weight (mass?) functionm : Q× T → R+. The PTA is
converted into a SPTA with probability function p defined as:

p(q, a) =
m(q, a)∑
t∈T m(q, t)

=
m(q, a)

m(q)
, (3.6)

where m(q) is the weight of all the samples which have a prefix that passes
through state q. In this way it is easy to see that the SPTA assigns a non-zero
probability to words iff they are in the input sample.

Contrast this to the Markov models where this is generally not true. The n-gram
models assign non-zero probability only to n-grams in the input sample. Words
which do not occur in the input sample, but which consist of only n-grams we
have seen will also get a non-zero probability.

STOCHASTIC DETERMINISTIC FINITE GRAMMARS

Given an SDFAM = (Q,A, δ, q0, p), then there exists a SDRGG = (N, T, R, S, p)
which has the same distribution language. The correspondence is as follows: For
1 ≤ i, j ≤ |Q|, let there be a Ni ∈ N, A = T ; for all transitions δ(qi, a) = qj
exists a rule Ri −→ aRj, S = N0 and pM(qi, a) = pQ(Ri −→ aRj). To be able to
define the stop probabilities we need a rule Ri −→ λ for all states qi which have a
non-zero accept probability, i.e., pM(qi, stop) = pQ(Ri −→ λ).

3.1. NOTATION 21

λ-REMOVAL FOR EXTENDED SDRG

An extended SDRG G is a tuple (N, T, R, S, p), with N,T ,S and p as for simple
SDRGs and the rules Rmay have the forms:

A → aB

A → a

A → λ

for A,B ∈ N and a ∈ T .
An ESDRG-λ is an SDRG G for which L(G) does not contain the empty string.

λ-removal for ESDRG-λ proceeds as follows:

1. partition the non-terminals in three sets, based on their rhs:

CLEAN no λ in rhs

DIRTY only λ in rhs

MIXED both with- and without λ in their rhs

2. for all non-terminals D in dirty, p(D −→ λ) = 1

a) for all C in clean s.t. C −→ aD, let d = p(C −→ aD) and e = p(C −→ a).
Remove C −→ aD and C −→ a from the grammar, add C −→ a with
probability p(C −→ a) = d+ e.

b) Likewise forM in mixed withM −→ bD.

Dirty is now empty. All productions R −→ aD involved in a derivation αR ⇒
αaD ⇒ αaλ ⇒ αa now have the same yield, with derivation αR ⇒ αa

with the same probability.

3. for allM in mixed, 1)N in clean or mixed, withN → aM, let f = p(M −→ λ),
g =

∑
α6=λ p(M −→ α) = 1 − f and h = p(N −→ a), i = p(N −→ aM). Set

p(N −→ a) = h+ if, p(N −→ aM) = ig, removeM −→ λ and renormalise all
remainingM −→ β.

Pre-removal, the rule M −→ β can either be the final step in a derivation
(when β is a or λ), or an intermediate step. The first case is the same as
those for elements of dirty. In the second case the derivational probabilities
from M onwards change by a multiplicative factor. This change is compen-
sated for by reducing the probability of all rewriting rule which rewrite as
M. There always is a previous rule because of the fact that the language
does not contain the empty string (hence the start symbol never produces
λ).

22 CHAPTER 3. METHODOLOGY

ENTROPY & CO.

The entropy of a probability distribution function P is defined as:

H(P) =
∑
x

P(x) log
1

P(x)
(3.7)

= −
∑
x

P(x) logP(x) (3.8)

The Kullback-Leibler divergence or relative entropy:

D(P,Q) =
∑
x

P(x) log
P(x)

Q(x)
(3.9)

the relative uncertainty of Q w.r.t. P.
The cross-entropy:

H(P,Q) =
∑
x

P(x) log
1

Q(x)

= H(P) +D(P,Q)

uncertainty ofQ w.r.t. P, note that the entropy is the cross-entropy of P w.r.t. itself.
The perplexity is closely related to the cross-entropy since it measures how ‘sur-

prised’ a model is when presented with a some data. The discrepancy between the
probability assigned by the model and the empirical distribution as implied by the
data (which for large sets will be a close approximation of the real distribution) is
then used as a measure of the fit of the model to the data.

PerplexityLM(S) = 2H(P(S),PLM(S))

3.2 DATA SPLIT

I will not use the train/development/test/validation split that is common for the
WSJ. The common setup is the following, use sections two through 22 (21?) as
training data, section one as development test data and 23 as validation test data.
Instead i will perform the ten-fold cross-validation (over the sections two through
22) that is more common in the machine learning field.

The dataset is segmented into the ten folds at the sentences level. To be more
precise, the dataset is first read in, then the sentences are shuffled and finally split
into ten equal subsets (give or take a single sentence).

3.3. DATA PREPROCESSING 23

3.3 DATA PREPROCESSING

The WSJ data is preprocessed to produce two different train sets per fold. First,
for both models, similar to Charniak [1996], the functional tags are stripped, null
and empty elements are removed; and second, head annotation is added (using
the rules described in Collins [1999].)

I then extract the grammar and lexicon from both datasets and further process
either independently of the other.

LEXICON

The lexicon is a multiset of tuples (word,POStag). I assume that the set of POStags
is a known, closed set of symbols, irrespective of the size of the train set. The set
of words on the other hand is not treated specially. This implies that there are two
types of problematic cases (as far as the lexicon is concerned.) we might encounter
during parsing. Both are tuples we have not seen during training:

• words we have seen, but not with the correct POStag (the tag with which it
occurs in the test set.)

• words which do not occur in the train data at all.
I simply collect the statistics for rare words in the training set, here rare words
are words that occur at most five times, and use the resulting tag distribution for
unknown words. Subsequently i do add-one smoothing over all tuples.

GRAMMAR

Starting off with a short overview of the models i will consider:
BASELINE identity transform, using the literal rules as extracted from the treebank
BIGRAM BASELINE identity transform, the rule righthand-sides are Markovised

with a bigram model.
HEAD BASELINE head annotation, straight rule extraction.
HEAD BIGRAM head annotation, bigrams over righthand-sides, head-outwards
HEAD SFSM head annotation, automata inferred over righthand-sides with vary-

ing parameter settings, head-outward and left-to-right.
The undecorated treebank trees are only used to provide a baseline for the other
models.

HEADLESS BASELINE

Given the tree in figure 3.1, we extract the following grammar for the headless
baseline:

24 CHAPTER 3. METHODOLOGY

TOP

S(2)

NP(1)

PRP

He

VP(1)

VBZ

wants

NP(1)

PRP

it

ADVP(1)

RB

now

.

.

Figure 3.1: Example tree. The numbers are the indices of the head child of each
node.

1 TOP −→ S
1 S −→ NP VP .
2 NP −→ PRP
1 VP −→ VBZ NP ADVP
1 ADVP −→ RB

all the terminals (the words) and pre-terminals (the POStags) end up in the lexi-
con.

HEADLESS BIGRAMS

Generating and n-gram model for the grammar rules is not very different from
generating it for any other set of samples. Converting the n-gram statistics (back)
into rules which can be used by the parser will, on the other hand, involve an
extra step. There are at least two ways to perform this step. One is to explicitly
write out the rules with their associated probabilities. This is the simpler of the
two methods, but becomes problematic if the Markov chain has cycles (which is
virtually unavoidable.) Going down this route would require an explicit limit on
the rule count, a limit on the length or probability mass, both are possible.

The other is to convert the implied FSM into a right- or left linear grammar. This
way we can maintain an exact representation of the underlying Markov model,
even for ‘infinite’ sequences. A minor inconvenience presents itself when we con-
dition on specific contexts (lhs of the rule or the head tag.) To avoid unwanted
interference between different Markov models we need to ensure that internal

3.3. DATA PREPROCESSING 25

nodes, or non-terminals, of the partial subgrammars are unique. (The subgram-
mars are partial in the sense that the yield of the subgrammars are sets of phrases,
strings of non-terminals and terminals.)

This results in the following grammar:

1 TOP −→ S
1 S −→ NP S1
1 S1 −→ VP S2
1 S2 −→ .
2 NP −→ PRP
1 VP −→ VBZ VP1
1 VP1 −→ NP VP2
1 VP2 −→ ADVP
1 ADVP −→ RB

the first thing that jumps out is that the number of rules has increased, and so has
the number of grammar symbols. This is not as bad as it may seem at first. The
increase gets proportionally smaller with an increasing amount of rules (unless
these rules share no commonality between one another.) Furthermore, because
the grammar that the parser uses for actual parsing is the, binarised, Chomsky
Normal Form of whatever grammar it is fed, this means that any rules with rhses
longer that two symbols will necessarily be broken up before parsing.

Also clearly visible are the subgrammars, one for each original non-terminal.

S

NP S1

VP S2

.

VP

VBZ VP1

NP VP2

ADVP
Figure 3.2: Parsing the original rules. The root of the first subtree is the original
non-terminal ‘S’, and the fringe of the tree is the original rule ‘NP VP .’, similarly
for the other subtrees.

The SFSM case is treated in the exact same way.

DEALING WITH HEADS

Phrases are centred around their head [Radford, 1988], this has prompted re-
searchers in computational linguistics to do head-outwards generation rules. Even
though for Markov models it does not matter in which direction a sequence is pro-
cessed, the count of n-grams does not change, therefore the inferred probabilities

26 CHAPTER 3. METHODOLOGY

do not change. For SFSMs this does matter, since the ordering of the sequences
typically influences the order in which merges are considered.∗ In addition to
that, for deterministic automata, the extra determinacy constraint imposes addi-
tional restrictions on the part of the search space that can be explored.

I will use the same notation as in [Collins, 1999]. After enriching the tree with
all the head tags, the subtrees with root P and head h have the following structure:

P(h)

~L H(h) ~R
Figure 3.3: head enriched subtree rooted at P, with head child H, head tag h and
left- and right modifiers ~L and ~R

This leads to the following collection of rules (see figure 3.3):

Pi −→ P(h)
P(h) −→ P-L H(h) P-R
P-L −→ Left partial subgrammar
P-R −→ Right partial subgrammar

where the sequences of left Lnl and right modifiers Rmr can consist of zero or
more symbols.

One way of dealing with heads is to add the head information, POStag symbol,
directly to the non-terminal, thereby expanding the non-terminal set considerably.
This has two direct consequences, one, it allows a much more specific assignment
of probabilities to differently distributed tags. Two, it exacerbates the data sparsity
problem. Not being convinced about the effectiveness of the former and slightly
troubled by the latter I chose not to deal with head information in this way.

Only the head child retains the attached head tag, the left- and right sequences
have their head tags stripped and intermediate symbols are introduced (denoted
by the lowercase i suffix). A set of unary rewrite rules is introduced to allow the
intermediate nodes to select a head.

HEAD BASELINE

Grouping the collections of rhses by lhs and the head produces four cases which
will be dealt with separately. The cases are: empty left and right modifiers, empty
left modifier and non-empty right modifier, non-empty left- and empty right mod-
ifier and finally both left- and right modifiers non-empty. In this way I can avoid

∗this happens to be the case for the lexicographic ordering used by the MDI algorithm

3.4. PARSING 27

the problem of (generating) empty rules when either sequence of dependent is
empty.

1 TOP −→ Si
1 Si −→ S-VBZ
1 S-VBZ −→ S-VBZ-L VP-VBZ S-VBZ-R
1 S-VBZ-L −→ NPi
1 S-VBZ-R −→ .
2 NPi −→ NP-PRP
2 NP-PRP −→ PRP
1 VP-VBZ −→ VBZ VP-VBZ-R
1 VP-VBZ-R −→ NPi ADVPi
1 ADVPi −→ ADVP-RB
1 ADVP-RB −→ RB

One undesirable side effect of this method (scheme?) is that it assumes that
the sequences of left- and right modifiers are dependant only on the lhs (parent
non-terminal), and that they are independent of one another. The experiments
will have to show whether this is a valid assumption to make.

Si

S-VBZ

S-VBZ-L

NPi

NP-PRP

VP-VBZ S-VBZ-R

.

Figure 3.4: Rebuilding the original rule with head information.

3.4 PARSING

The parser used for all experiments is BitPar [Schmid, 2004]. BitPar is a highly
optimised chart parser for PCFGs. Given a grammar, a lexicon and a text to parse it
computes the entire parse forest for that sentence and outputs the most probable
(Viterbi) parse, the top n most probable parses or the entire parse forest (given
enough disk space).

28 CHAPTER 3. METHODOLOGY

This has two consequences, the most probable parse, as returned by the parser,
really is the most probably parse and not an approximation and two, comparatively
long parse times.†

Unknown words can be handled in two ways. The first way to handle them is
to supply a file with possible POStags for unknown words and the second way
is to provide a SFST to map words to tags. We choose the former for the sake
of simplicity. Additionally BitPar has the option to smooth the word classes, the
smoothing it uses is simple add-δ or additive smoothing. BitPar automatically dis-
cards POStags which are less likely than some fraction of the most likely POStag.
This can be set via a command line option.

3.5 POST-PROCESSING

As described above, all the models involve one or more transformations on the
original treebank and since we want to compare parse performance relative to
the original forms, we will have to undo any transformations that may have been
applied.

In my case that means one of the following:

• low level, character escaping due to parser peculiarities

• delinearising subgrammars

• stripping head information

The first, low level, inverse transform is a simple textual substitution and will
not be described any further here.

Delinearising the various subgrammars is a matter of walking through the gen-
erated tree collapsing ‘expansion nodes’. Expansion nodes are nodes for which
the rightmost child is an intermediate node. Collapse the right branching struc-
ture under the expanded node by collating all siblings of the intermediate nodes,
in order, all the way up to the first non-intermediate descendant node. Also ap-
pend this non-intermediate node to the list. Finally, replace the children of the
expansion node with the nodes in the generated list.

Undoing the head transformation is very similar. For each node, if it has in-
termediate children, replace its children by all its grandchildren (again, in order).
Afterwards, map all head annotated symbols back onto the original forms.

†just under five seconds per sentence on a 2.8GHz P4 for a 18,500 rule grammar with 4800
symbols.

3.6. EVALUATION 29

3.6 EVALUATION

PERPLEXITY

A problem with the perplexity as a measure of fit is that it is undefined if the
model under consideration assigns zero probability to an event in the dataset. The
common solution is to mix, or interpolate, the model that one is testing. Either
with the target distribution or with a probability model which is guaranteed to
assign non-zero probability to all events. Specifically, a unigram model does not
have this property if not all symbols in the test data occur in the train data. I
therefore interpolate with a uniform distribution over all possible symbols.

The other approach has been taken by Infante-Lopez [2005]. Which is to ignore
all problematic cases. The benefits of this methods are that the results are not
muddled by some inappropriate distribution. On the other hand, it skews the
results markedly in favour of the, for the dataset ill-defined, model.

During preliminary testing a disconcerting fact came up. The induced SFSMs
were unable to improve on the scores obtained by the n-gram models. At best they
were only able to match the perplexity values. The handful of tags that did favour
the SFSMs were rare, both in the test as well as in the train data, and as such, had
a negligible effect of the resulting grammar.

PARSING

There are a couple of historical facts that have an artificially inflating effect on all
published scores regarding the parse scores. These are, in no particular order:

1. limiting parsing to sentences of length 40 or less.
2. treating some tags as equivalent (ADVP and PRT).
3. ignoring all (non-sentence final) punctuation.

The first point is entirely a problem of the past. In the early nineties computing
power was considerable, but nowhere near the levels they are today. As the sen-
tence length increases so does parse ambiguity and hence parsing time. Nowadays
this is not a problem anymore for PCFG parsers (it still is for the more powerful
models though), but the numbers reported usually still are for the, better scoring,
length limited sentences. The difference between including the scores for all sen-
tence lengths and those of length 40 or less is about 1.0–1.5 points of FMeasure.

The second point is more debatable, but its effect is negligible, less than 0.1
points of FMeasure.

The final point is similar to the previous one, but has had a different reasoning
and a significantly greater impact. The reason people in the parsing community
ignore punctuation is that humans tend to be very inconsistent in their use of
punctuation. Probably because it is only a hint and not a hard rule to help the

30 CHAPTER 3. METHODOLOGY

reader break up longer passages, which would have been broken up by pauses in
spoken language. Ignoring punctuation lead to a 1.5–2.5 points increase.

It is my view that a if a relabelling is performed, then it should be applied to the
data in a preprocessing step and not as an afterthought hack in the evaluation. The
adding or removing of nodes is a more drastic measure and a more well thought
out reason for ignoring it should be presented.

The major exception is the exclusion of the brackets/parentheses labelled TOP
(or ROOT). These were added to the treebank to ensure that each trees has a single
root element (and thus that the grammar has a single unique start symbol.)

4 RESULTS

This chapter an analysis of the results of the experiments. As explained in the
previous chapter, all reported results are for all sentence lengths. No labels (punc-
tuation and the like) are ignored or removed apart from the TOP label.

A concise overview of all results can be found in table 4.1.

4.1 OVERALL

BASELINE

The baseline model is the simple treebank grammar which was obtained by simple
extraction of the PCFG rules as they occurred in the corpus. This experiment
has been included to a) put the results in this thesis in perspective to the results
generally reported in the literature, and b) to form the baseline for the next model.

For the sake of completeness, the results for the simple PCFG for sentences up
to length 40 are 66.87 LR (σ 0.37) and 71.99 LP (σ 0.35).

BASELINE WITH HEAD ANNOTATION

The model in this experiment has the head information added as described in
section 3.3, but is otherwise identical to the baseline PCFG.

Results for sentences up to 40 words are 68.11 LR (σ 0.20) and 73.11 (σ 0.21).
Comparing the results of the two models shows that head enriching the trees

and breaking up the PCFG rules helps both labelled recall and -precision.

4.2 UNSEEN RULES

A closer inspection reveals that 833 of the total of 3894 test sentences, approxi-
mately 21%, of the first fold contain at least one unseen rule. The parse results
for those sentences are shown in table 4.2. The average sentence length for this

31

32 CHAPTER 4. RESULTS

Table 4.1: Parse results for all sentence lengths, µ is the mean, σ the standard
deviation.

model LR LP FMeasure CB

µ σ µ σ µ σ µ σ

baseline 65.69 0.31 70.73 0.31 68.12 0.29 3.21 0.06
baseline w/ head 66.83 0.23 71.72 0.23 69.19 0.22 3.02 0.05

bigram 65.90 0.21 71.49 0.17 68.58 0.18 3.02 0.04
n-gram 66.78 0.23 71.98 0.33 69.28 0.23 2.99 0.08

fsm 8e-5 63.57 0.35 63.95 0.41 63.76 0.34 3.90 0.06
fsm var 60.50 0.56 63.07 0.58 61.76 0.57 4.05 0.10

sample is rather high, just over 30 instead of the average of 22 for the entire WSJ.
The numbers are for a single fold only, hence the lack of a standard deviation.

We see that the baseline is severely affected, dropping almost six points of FMea-
sure. The FSM method is consistently catastrophic, not even starting out with a
great margin of error could help the eight points drop in performance, the relative
error increase is 17.8% versus 14.6% for the baseline.

Remarkably, the results for the bigrams and the variable ordern-grams are iden-
tical to each other. Their drop is not as drastic as either the FSM or the baseline,
about two points; this makes their relative error increase less than half of the other
two methods (the error increases are 4.5% and 6.9% for the bigram and variable
order n-gram respectively.)

Table 4.2: Parse results for sentences with unseen rules, single fold

model LR LP FMeasure CB

baseline 60.69 63.74 62.18 4.76

bigram 66.22 68.12 67.16 4.22
n-gram 66.22 68.12 67.16 4.22

fsm 8e-5 57.22 55.54 56.36 6.03
fsm var 53.45 54.17 53.81 6.17

5 CONCLUSION

Assigning proper probabilities to grammars rules turns out to be harder than it
may seem at first. The primary goal of this thesis was to be able to efficient and
effective way to assign these probabilities. And in doing so, be able to dispense
with the ubiquitous n-grams in another part of natural language processing.

This thesis gives inconclusive evidence as to whether the more powerful regu-
lar grammars are unable to outperform the simpler Markov models. Using vari-
able context lengths, provides a small but real increase in the performance of said
Markov models. Why then do the finite state machines not have the same benefits?
A possible but unlikely answer would be that the inference algorithm is unable to
identify the ‘correct’ automaton. The MDI algorithm has been successfully applied
to artificial and real problems [Thollard et al., 2000].

Another option that has not been ruled out is the actual implementation, which
might still be flawed.

5.1 REVISITING THESIS STATEMENT

The questions posed at the start of the thesis were:
1. How can we sensibly generalise treebank grammars?
2. Can we escape the clutches of the omnipresent n-grams?
The first has remained largely unanswered. Yes, you can use finite state au-

tomata, but it is not a particularly good idea. And the second has been a resound-
ing no. There is more to be gained from using as much context as one can get
from a treebank and subsequently applying better informed smoothing methods.
Ones which, unlike the Markov models, can interpolated or back-off to a coarser
model.

33

BIBLIOGRAPHY

The Computational Analysis of English: A Corpus-based Approach. Longman Pub-
lishing Group, Harlow, UK, dec 1987. ISBN 0582291496.

Speech and Natural Language, Proceedings of a Workshop held at Pacific Grove, Califor-
nia, USA, February 19-22. 1991, 1991. Morgan Kaufmann. ISBN 1-55860-207-0.

Naoki Abe and Manfred Warmuth. On the computational complexity of approxi-
mating distributions by probabilistic automata. In Proceedings of the Third Work-
shop on Computational Learning Theory, pages 52–66. Morgan Kaufmann, 1990.
URL citeseer.ist.psu.edu/abe90computational.html.

S. Abney, R. Schapire, and Y. Singer. Boosting applied to tagging and PP attach-
ment, 1999. URL citeseer.ist.psu.edu/abney99boosting.html.

Dana Angluin. Inference of reversible languages. J. ACM, 29(3), 1982. ISSN
0004-5411.

Daniel M. Bikel. Intricacies of collins’ parsing model. Computational Linguis-
tics, 30(4):479–511, dec 2004. ISSN 0891-2017. doi: http://dx.doi.org/10.1162/
0891201042544929.

Ezra Black, Steven P. Abney, D. Flickenger, Claudia Gdaniec, Ralph Grishman,
P. Harrison, Donald Hindle, Robert Ingria, Frederick Jelinek, Judith L. Kla-
vans, Mark Liberman, Mitchell P. Marcus, Salim Roukos, Beatrice Santorini,
and Tomek Strzalkowski. A procedure for quantitatively comparing the syn-
tactic coverage of english grammars. NAA [1991]. ISBN 1-55860-207-0. URL
http://acl.ldc.upenn.edu/H/H91/H91-1060.pdf.

Taylor L. Booth and Richard A. Thompson. Applying probability measures to ab-
stract languages. IEEE Transactions on Computers, C-22(5):442–450, May 1973.

J. Bresnan, R. M. Kaplan, S. Peters, A, and Zaenen. Cross-serial dependencies
in dutch. In FormalComplexityNaturalLanguage87 FormalComplexityNatural-
Language87.

35

citeseer.ist.psu.edu/abe90computational.html
citeseer.ist.psu.edu/abney99boosting.html
http://acl.ldc.upenn.edu/H/H91/H91-1060.pdf

36 BIBLIOGRAPHY

Peter F. Brown, Peter V. de Souza, Robert L. Mercer, Vincent J. Della Pietra, and
Jenifer C. Lai. Class-based n-gram models of natural language. Computational
Linguistics, 18(4), December 1992. URL citeseer.ist.psu.edu/article/
brown92classbased.html.

Rafael Carlos Carrasco Jiménez and Jose Oncina Carratalá. Learning stochastic
regular grammars by means of a state merging method. In ICGI 94: Proceedings
of the Second International Colloquium on Grammatical Inference and Applications,
volume 862, pages 139–152, London, UK, 1994. Springer-Verlag. ISBN 3-540-
58473-0. URL citeseer.ist.psu.edu/carrasco94learning.html.

Rafael Carlos Carrasco Jiménez and Jose Oncina Carratalá. Learning determin-
istic regular grammars from stochastic samples in polynomial time. RAIRO
(Theoretical Informatics and Applications), 33(1):1–20, 1999.

Eugene Charniak. Tree-bank grammars. In AAAI/IAAI, Vol. 2, pages 1031–1036,
1996. URL citeseer.ist.psu.edu/charniak96treebank.html.

Stanley F. Chen and Joshua Goodman. An empirical study of smoothing tech-
niques for language modeling. Technical Report TR-10-98, Computer Science
Group, Harvard University, august 1998.

Noam Chomsky. Three models for the description of language. IRA transactions
on information theory, 1956.

Alexander Clark and Frank Thollard. PAC-learnability of probabilistic determinis-
tic finite state automata. Machine Learning Research, pages 473–497, 2004.

Michael John Collins. A new statistical parser based on bigram lexical de-
pendencies. In Arivind Joshi and Martha Palmer, editors, Proceedings of the
Thirty-Fourth Annual Meeting of the Association for Computational Linguistics,
pages 184–191, San Francisco, 1996. Morgan Kaufmann Publishers. URL
citeseer.ist.psu.edu/article/collins96new.html.

Michael John Collins. Head-Driven Statistical Models for Natural Language Parsing.
PhD thesis, University of Pennsylvania, 1999.

Micheal John Collins. Three generative, lexicalized models for statistical parsing.
In Philip R. Cohen and Wolfgang Wahlster, editors, Proceedings of the Thirty-
Fifth Annual Meeting of the Association for Computational Linguistics and Eighth
Conference of the European Chapter of the Association for Computational Linguis-
tics, pages 16–23, Somerset, New Jersey, 1997. Association for Computational
Linguistics. URL citeseer.ist.psu.edu/article/collins97three.html.

citeseer.ist.psu.edu/article/brown92classbased.html
citeseer.ist.psu.edu/article/brown92classbased.html
citeseer.ist.psu.edu/carrasco94learning.html
citeseer.ist.psu.edu/charniak96treebank.html
citeseer.ist.psu.edu/article/collins96new.html
citeseer.ist.psu.edu/article/collins97three.html

37

Colin de la Higuera and Franck Thollard. Identification in the limit with proba-
bility one of stochastic deterministic finite automata. In Oliveira [2000]. ISBN
3-540-41011-2.

François Denis. Learning regular languages from simple positive examples. Ma-
chine Learning, 44(1/2):37–66, 2001.

François Denis and Yann Esposito. Learning Theory, volume 3120 of Lecture Notes
in Computer Science, chapter Learning Classes of Probabilistic Automata, pages
124–139. Springer Berlin/Heidelberg, june 2004.

Jason Micheal Eisner. Smoothing a Probabilistic Lexicon via Syntactic Transforma-
tions. PhD thesis, University of Pennsylvania, 2001.

Jean-Babtiste Estoup. Les gammes stenographiques. Institut Stenographique de
France, 1916.

FormalComplexityNaturalLanguage87. The Formal Complexity of Natural Lan-
guage. Reidel, Dordrecht, Nederland, 1987.

King Sun Fu and T. Huang. Stochastic grammars and languages. International
Journal of Computer and Information Sciences, 1(2):135–170, 1972.

Daniel Gildea. Corpus variation and parser performance. In Lillian Lee and Donna
Harman, editors, Proceedings of the 2001 Conference on Empirical Methods in Nat-
ural Language Processing, pages 167–202, 2001.

Mark E. Gold. Language identification in the limit. Information and Control, 10(5):
447–474, 1967. URL http://www.isrl.uiuc.edu/~amag/langev/paper/
gold67limit.html.

I.J. Good. The population frequencies of species and the estimation of population
parameters. Biometrika, 40(3):237–264, 1953. doi: doi:10.2307/2333344.

Theodore Edward Harris. The Theory of Branching Processes, volume 119 of Die
Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit beson-
derer Berücksichtigung der Anwendungsgebiete. Springer-Verlag, Berlin, 1963.

J. C. Henderson and E. Brill. Bagging and boosting a treebank parser. ArXiv
Computer Science e-prints, 2000.

John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley, 1979. ISBN 0321462251.

http://www.isrl.uiuc.edu/~amag/langev/paper/gold67limit.html
http://www.isrl.uiuc.edu/~amag/langev/paper/gold67limit.html

38 BIBLIOGRAPHY

Norbert Hornstein and David Lightfoot, editors. Explanation in Linguistics: The
Logical Problem of Language Acquisition, pages 9–31. Volume unspeakabledepths
of , Hornstein and Lightfoot [1981b], 1981a.

Norbert Hornstein and David Lightfoot, editors. Explanation in Linguistics: The
Logical Problem of Language Acquisition. Longman, 1981b.

Sandra E. Hutchins. Stochastic sources for context-free languages. PhD thesis, De-
partment of Applied Physics and Information Science, University of California,
San Diego, 1970.

Gabriel Gaston Infante-Lopez. Two-level Probabilistic Grammars for Natural Lan-
guage Parsing. PhD thesis, Universiteit van Amsterdam, 6April 2005.

Mark Johnson. PCFG models of linguistic tree representations. Compu-
tational Linguistics, 24(4), 1998. URL citeseer.ist.psu.edu/article/
johnson98pcfg.html.

Christopher Kermorvant and Pierre Dupont. Stochastic grammatical inference
with multinomial tests. In LNAI, volume 2484, pages 149–160. Springer-
Verlag, 2002.

Dan Klein and Christopher D. Manning. Accurate unlexicalized parsing. In ACL
’03: Proceedings of the 41st Annual Meeting on Association for Computational Lin-
guistics, pages 423–430, Morristown, NJ, USA, 2003. Association for Computa-
tional Linguistics. doi: http://dx.doi.org/10.3115/1075096.1075150.

David M. Magerman. Statistical decision-tree models for parsing. In Meeting of the
Association for Computational Linguistics, pages 276–283, 1995. URL citeseer.
ist.psu.edu/magerman95statistical.html.

Christopher D. Manning and Hinrich Schütze. Foundations of Statistical Natural
Language Processing. MIT Press, second edition, 1999. ISBN 0-262-13360-1.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Build-
ing a large annotated corpus of english: The penn treebank. Computational
Linguistics, 19(2):313–330, 1994. URL citeseer.ist.psu.edu/article/
marcus93building.html.

Maurice Nivat and Andreas Podelski. Minimal ascending and descending tree
automata. SIAM J. Comput., 26(1):39–58, 1997.

Arlinedo L. Oliveira, editor. Grammatical Inference: Algorithms and Applications,
5th International Colloquium, ICGI 2000, Lisbon, Portugal, September 11–13, 2000,
Proceedings, volume 1891 of Lecture Notes in Computer Science, 2000. Springer.
ISBN 3-540-41011-2.

citeseer.ist.psu.edu/article/johnson98pcfg.html
citeseer.ist.psu.edu/article/johnson98pcfg.html
citeseer.ist.psu.edu/magerman95statistical.html
citeseer.ist.psu.edu/magerman95statistical.html
citeseer.ist.psu.edu/article/marcus93building.html
citeseer.ist.psu.edu/article/marcus93building.html

39

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan Klein. Learning accurate,
compact, and interpretable tree annotation. In Proceedings of the 21st Interna-
tional Conference on Computational Linguistics and 44th Annual Meeting of the
Association for Computational Linguistics, pages 433–440, Sydney, Australia, July
2006. Association for Computational Linguistics. URL http://www.aclweb.
org/anthology/P/P06/P06-1055.

Carl Pollard and Ivan A. Sag. Head-Driven Phrase Structure Grammar. University of
Chicago Press and CSLI Publications, Chicago, Illinois, 1994. URL citeseer.
ist.psu.edu/pollard94headdriven.html.

W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling. Numerical Recipes
in C. Cambridge University Press, 1988.

Andrew Radford. Transformational Grammar: A First Course. Cambridge Univer-
sity Press, Cambridge, UK, first edition, may 1988. ISBN 0521347505.

Dana Ron, Yoram Singer, and Naftali Tishby. The power of amnesia: Learning
probabilistic automata with variable memory length. Machine Learning, 1996.
URL citeseer.ist.psu.edu/article/ron96power.html.

Dana Ron, Yoram Singer, and Naftali Tishby. On the learnability and usage of
acyclic probabilistic finite automata. Journal of Computer and System Sciences, 56
(2):133–152, 1998. URL citeseer.ist.psu.edu/ron95learnability.html.

Ronald Rosenfeld. Two decades of statistical language modeling: Where do we go
from here? In Proceedings of the IEEE, volume 88, pages 1270–1278. IEEE, aug
2000.

Ivan A. Sag, Thomas Wasow, and Emily M. Bender. Syntactic Theory: A Formal
Introduction. CSLI Lecture Notes. Center for the Study of Language and INF,
2ed edition, 2003. ISBN 1575864002.

Geoffrey Sampson. The grammatical database and parsing scheme, chapter 7, pages
82–96. 1987.

Remko J.H. Scha. Taaltheorie en taaltechnologie: competence en performance.
In Q.A.M. de Kort and G.L.J. Leerdam, editors, Computertoepassingen in de Neer-
landistiek, LVVN-jaarboek, pages 7–22. Landelijke Vereniging van Neerlandici,
1990.

Helmut Schmid. Efficient parsing of highly ambiguous context-free grammars
with bit vectors. In YoMomma [2004].

http://www.aclweb.org/anthology/P/P06/P06-1055
http://www.aclweb.org/anthology/P/P06/P06-1055
citeseer.ist.psu.edu/pollard94headdriven.html
citeseer.ist.psu.edu/pollard94headdriven.html
citeseer.ist.psu.edu/article/ron96power.html
citeseer.ist.psu.edu/ron95learnability.html

40 BIBLIOGRAPHY

Claude Elwood Shannon. A mathematical theory of communication. Bell System
Technical Journal, 27:379–423, 623–656, 1948.

S. M. Shieber. Evidence against the context-freeness of natural language. In
FormalComplexityNaturalLanguage87 FormalComplexityNaturalLanguage87,
pages 320–334.

Thomas A. Sudkamp. Languages and machines: an introduction to the theory of
computer science. Addison-Wesley, 2nd edition, 1998.

Franck Thollard, Pierre Dupont, and Colin de la Higuera. Probabilistic DFA in-
ference using Kullback-Leibler divergence and minimality. In Proc. 17th Inter-
national Conf. on Machine Learning, pages 975–982. Morgan Kaufmann, San
Francisco, CA, 2000. URL www.sfs.nphil.uni-tuebingen.de/~thollard/
Recherches/Icml2k/icml2k.html.

Leslie G. Valiant. A theory of the learnable. In STOC ’84: Proceedings of the sixteenth
annual ACM symposium on Theory of computing, pages 436–445, New York, NY,
USA, 1984. ACM Press. ISBN 0-89791-133-4. doi: http://doi.acm.org/10.1145/
800057.808710.

José Luis Verdú Más, Mikel L. Forcada Zubizarreta, Rafael Carlos Car-
rasco Jiménez, and Jorge Calera Rubio. Tree k-grammar models for natural
language modelling and parsing. 0302-9743 - Lecture Notes in Computer Science -
Lecture Notes in Artificial Intelligence, pages 53–63, 2002.

Charles S. Wetherell. Probabilistic languages: A review and some open questions.
ACM Computing Surveys, 12(4):361–379, 1980. ISSN 0360-0300. doi: http:
//doi.acm.org/10.1145/356827.356829.

YoMomma, editor. COLING ’04: Proceedings of the 20th international conference on
Computational Linguistics, Morristown, NJ, USA, 2004. Association for Compu-
tational Linguistics.

George Kingsley Zipf. Selective studies and the principle of relative frequency in
language. Harvard University Press, Cambridge, MA, 1932.

www.sfs.nphil.uni-tuebingen.de/~thollard/Recherches/Icml2k/icml2k.html
www.sfs.nphil.uni-tuebingen.de/~thollard/Recherches/Icml2k/icml2k.html

	Contents
	Preface
	Introduction
	Overview

	Background
	Computational Linguistics
	Corpora and Annotation
	Parsing
	Parse Evaluation

	Problem Statement
	Previous Work

	Methodology
	Notation
	Data Split
	Data Preprocessing
	Parsing
	Post-processing
	Evaluation

	Results
	Overall
	Unseen Rules

	Conclusion
	Revisiting Thesis Statement

	Bibliography

