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Any formal model of visual Gestalt perception requires a language for

representing possible perceptual structures of visual stimuli, as well as a

decision criterion that selects the actually perceived structure of a stimulus

among its possible alternatives. This paper discusses an existing model of

visual Gestalt perception that is based on Structural Information Theory.

We investigate two factors that determine the representational power of

this model: the domain of visual stimuli that can be analyzed, and the

class of perceptual structures that can be generated for these stimuli. We

show that the representational power of the existing model of Structural

Information Theory is limited, and that some of the generated structures

are perceptually inadequate. We argue that these limitations do not imply

the implausibility of the underlying ideas of Structural Information Theory

and introduce alternative models based on the same ideas. For each of

these models, the domain of visual stimuli that can be analyzed properly is

formally defined. We show that the models are conservative modifications

of the original model of Structural Information Theory: for cases that are

adequately analyzed in the original model of Structural Information Theory,

they yield the same results.
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perceptual structures.

1. INTRODUCTION

Every sensory pattern has many potential structures. Human perceivers usually
prefer one of these structures. For example, the visual pattern illustrated in Figure
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1-A may have, among other ones, the two structures illustrated in Figure 1-B and
1-C. In this case, human perceivers tend to prefer the structure that is illustrated
in Figure 1-B.

FIG. 1. Visual pattern A has two potential structures B and C. Structure B is perceptually
preferred.

Several studies have tried to articulate the principles that underlie the human
perception of sensory patterns and to predict the perceived (i.e. perceptually pre-
ferred) structures. Early work in this area was initiated by (Wertheimer, 1923).
Wertheimer proposed several factors such as similarity, continuity, and proximity,
in terms of which the perceived structure of sensory patterns can be explained.
For example, the proximity factor causes closely positioned sensory elements to be
perceived as members of one perceptual group; the similarity factor causes similar
sensory elements to be perceived as forming one perceptual group. The problem
is, however, that no prioritization for these factors is proposed. Thus, whenever
different factors predict different structures for a pattern, the perceived structure
of that pattern cannot be explained. For example, the proximity and similarity
factors predict two different structures for the pattern illustrated in Figure 2. Al-
though in this pattern proximity wins from similarity (i.e. the perceived structure
of this pattern is determined by proximity), one cannot generalize this observation
and state that proximity always wins from similarity.

FIG. 2. The proximity factor, rather than the similarity factor, dominates perceptual
grouping.

Koffka (Koffka, 1935) emphasized that many of the Gestalt factors may be viewed
as instances of one rather general principle, called Prägnanz, which predicts that
the simplest structure of a pattern, among its possible structures, is the one that
is actually perceived. The Prägnanz principle does not state what kind of pat-
tern structures should be generated, nor does it provide a measure to determine
the simplicity of pattern structures. Leeuwenberg (Leeuwenberg, 1971) addressed
these questions by developing the Structural Information Theory, henceforth SIT.
The fundamental concept proposed by SIT is descriptive simplicity: the perceived
structure of a pattern is reflected by the simplest description of that pattern. The
simplest description of a pattern is defined as the description which captures the
largest amount of perceptually relevant regularity in that pattern.

In Structural Information Theory, the perceptually relevant regularities of pat-
terns are specified as hierarchical arrangements of identical pattern parts. In or-
der to specify possible descriptions of a pattern and decide on the simplest one,
Leeuwenberg and his colleagues proposed a coding model. In this coding model,
which we will briefly explain in the next section, patterns are represented as one-
dimensional symbol sequences, i.e. strings; different occurrences of a substring are
considered as identical pattern parts. These sequential patterns are then analyzed
by means of a number of operators. Each operator is responsible for capturing a
specific type of perceptually relevant pattern regularity. To compare the simplici-
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ties of the resulting descriptions, a complexity measure, called information load, is
introduced.

The current paper is concerned with the coding model proposed by Leeuwenberg
and Van der Helm (Leeuwenberg, 1971; Van der Helm & Leeuwenberg, 1991). We
follow the basic idea of SIT which states that the perceived structure of a pattern
is reflected by the description of that pattern which captures the largest amount
of perceptually relevant regularity. However, we discuss various inadequacies of
the coding model that was proposed. In particular, we argue that the coding
model is limited; it can be applied only to a small class of perceptual patterns
that can be unambiguously encoded as sequential patterns. Moreover, we show
that the coding model as it stands is ambiguous; several of its assumptions are
not explicitly specified. Finally, we give examples to demonstrate that some of the
pattern regularities used in the coding model are not perceptually relevant.

We present alternative coding models by developing formal languages with ex-
pressions which denote perceptual patterns, such that the formal structure of the
expressions represents the perceptual structure of the denoted patterns. For each
of these languages a complexity measure is defined that assigns natural numbers
(complexity values) to its expressions. We show in detail that our coding models
generalize and modify the original SIT proposal in a constructive way; i.e., to the
extent that SIT’s predictions seemed plausible, they are preserved.

The paper is structured as follows. In section 2, Structural Information Theory
and its existing coding model is explained. The domain of perceptual patterns that
can be analyzed by the coding model is discussed and some minor modifications
of SIT are proposed. In section 3, we formalize the coding model of modified
SIT by proposing a language with a formal syntax and semantics together with
a complexity measure defined on its expressions. It is shown that the perceived
structure of a sequential pattern, as predicted by modified Structural Information
Theory, is represented by the expression of the proposed language that denotes the
pattern and has the lowest complexity value. In section 4, the proposed language
is generalized to represent all two-dimensional line patterns and their perceptual
structures. A complexity measure is designed for this language and it is shown
that the perceived structure of a one-dimensional line pattern as predicted by the
modified SIT is the expression that denotes the pattern and that has the lowest
complexity value. Section 5 discusses limitations of the current proposal and looks
at its prospects for further development.

2. STRUCTURAL INFORMATION THEORY

Structural Information Theory (SIT) is a general theory of pattern perception
which tries to explain why humans consistently perceive certain pattern structures.
The explanation is based on the assumption that the human perceptual system
is sensitive to certain types of structural regularities of patterns. A structural
regularity of a pattern is a hierarchical arrangement of identical pattern parts. For
example, the regularity of the string abab may be defined in terms of the identity
of the first and the third characters a, the second and the fourth characters b, and
the first and the second substring ab. Note that these identities are hierarchically
ordered: the identity of the substrings ab implies the identities of the a’s and the
b’s.
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According to SIT, only certain types of structural regularities are perceptually
relevant. These regularities are specified by the ISA operators: Iteration, Symme-
try and Alternation. These operators are conjectured to reflect innate principles of
mental representation. A pattern can be described by means of the ISA operators
in different ways. The resulting descriptions indicate different Gestalts (perceptual
structures) of the pattern. In order to disambiguate the set of alternative structures
and to decide on the perceived structures of the pattern, a complexity measure is
introduced. The complexity measure is defined on pattern descriptions and it in-
dicates the lack of perceptual regularity within a pattern. It is claimed that the
description of a pattern with the lowest complexity value describes the pattern in
the most simple and cognitively economical way, and thus indicates the perceived
structure of the pattern. The idea that the simplest description of a pattern indi-
cates the perceived structure of that pattern is called the simplicity principle. Of
course, some patterns may not have a unique simplest description; more than one
description with the same minimum complexity value may exist. These patterns
are ambiguous; they do not have a unique perceived structure.

In this way, SIT relates descriptive simplicity (i.e. simplicity of pattern descrip-
tions) to phenomenal simplicity (i.e. simplicity of perceptual organizations). This
distinguishes SIT from description theories which employ arbitrary operations to
encode patterns in the most compact way, without claiming that the resulting de-
scriptions indicate the phenomenal simplicity of the patterns (Li & Vitányi, 1993;
Grünwald, 2000). For example, compression systems in computer science reduce
the number of bits needed to store binary data. These compression systems employ
various kinds of regularities, but there is no claim that the more compressed de-
scription reflects a meaningful structure of the binary data. SIT differs from these
kinds of description theories in that its compression operators (ISA reductions) and
complexity measure are perceptually motivated.

The set of ISA operators and the complexity measure, as originally proposed
in (Leeuwenberg, 1971), have undergone several revisions until Van der Helm and
Leeuwenberg put them on a formal basis (Van der Helm & Leeuwenberg, 1991).
They introduced a criterion called accessibility which is based on a formal analysis
of regularity and hierarchy. A number of experiments have tested predictions based
on the simplicity principle. The predictions were, on the whole, confirmed by the ex-
periments ((Van der Vegt, Buffart, & Van Leeuwen, 1989), (Boselie, 1988), (Boselie
& Wouterlood, 1989), (Buffart, Leeuwenberg, & Restle, 1981), (Van Leeuwen
& Buffart, 1989), (Van Leeuwen, Buffart, & Van der Vegt, 1988), and (Stins &
Van Leeuwen, 1993)).

2.1. The Descriptions of Patterns by SIT
Although Structural Information Theory is intended as a general theory of pat-

tern perception, it is built on a model for describing strings (character patterns).
Strings are described by means of the Iteration, Symmetry, Right-Alternation and
Left-Alternation operators. The domain of strings is not formally defined in the
SIT literature. We now first provide a formal definition of this domain and then
define the ISA operators.
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Definition 2.1. Let A be a set of primitive symbols. The domain Ds of strings
over A is defined as follows:

• A ⊂ Ds

• If Xi ∈ Ds for 1 ≤ i ≤ n, then X1 · · ·Xn ∈ Ds

• If X ∈ Ds, then (X) ∈ Ds

In our examples, we will choose A to be the set of lower case letters of the
English alphabet, i.e. A = {a, b, . . .}. Note that the domain of strings does not
only contain sequences of primitive symbols; sequences may also contain (possibly
nested) parentheses.

Definition 2.2. Let X, X1, . . . , Xn stand for any string in Ds; let m stand for
any natural number greater than one. For n ≥ 1, the Iteration, Symmetry, Right-
and Left-Alternation operators are defined by the following schemata:

Iteration : m ∗ (X) =

m times︷ ︸︸ ︷
X · · ·X

Symmetry : S[(X1)(X2) · · · (Xn)] = X1X2 · · ·XnXn · · ·X2X1

Symmetry : S[(X1)(X2) · · · (Xn), (X)] = X1X2 · · ·XnXXn · · ·X2X1

Right alternation : < (X) > / < (X1)(X2) · · · (Xn) > = XX1XX2 · · ·XXn

Left alternation : < (X1)(X2) · · · (Xn) > / < (X) > = X1XX2X · · ·XnX

In this definition, two versions of the symmetry operator are defined to cover
symmetrical strings with a pivot element (odd symmetry) and symmetrical strings
without a pivot element (even symmetry). The following examples illustrate the
description of strings by means of the ISA operators.

Iteration : 3 ? (a) = aaa

Symmetry : S[(a(b))(cd)] = a(b)cdcd(b)a
Symmetry : S[(a)(b)(cd), (e)] = abcdecdba

Right Alternation : < (a) > / < (b)(cd)(efg) > = abacdaefg

The parentheses that occur in the arguments of the ISA operators indicate the
constituents of these arguments. These constituents are called chunks. For exam-
ple, in S[(a)(bc)], the chunk bc is considered as one constituent of the first argument
of the symmetry operator. Therefore, S[(a)(bc)] and S[(a)(b)(c)] describe respec-
tively abcbca and abccba. In the first string, two primitive elements are joined into
one chunk while in the second string each primitive element is considered as a chunk
by itself.

The descriptions consisting of applications of ISA operators to strings are called
ISA forms. When a string as a whole cannot be described by an ISA operator, the
string may be divided into several substrings, called clusters, such that each cluster
can be described by the ISA operators. For example, the string abcbcaefef may be
analyzed as S[(a)(bc)] 2 ∗ (ef) when it is divided into the two clusters abcbca and
efef .

A string can be described by applying the ISA operators recursively since the
arguments of an ISA operator are themselves strings. The nested structure of such
a description assigns a hierarchical organization to the string that is being described.
For example, a possible clustering and a nested structure of the string aabbccccbbaa
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may be specified in the following way. At the first hierarchical level, the whole
string can be analyzed by the symmetry rule and thus it can be considered as one
cluster:

aabbccccbbaa → S[(a)(a)(b)(b)(c)(c)]

The argument of the symmetry operator (i.e. (a)(a)(b)(b)(c)(c) ) is itself a string
which can be analyzed further. The structure of this argument determines the
clusters at the next lower level. Because the string (a)(a)(b)(b)(c)(c) cannot be
analyzed by one ISA operator, it is divided into three clusters. Thus, at the second
nested level the string can be analyzed as three clusters, i.e.

(a)(a)(b)(b)(c)(c) → 2 ∗ ((a)) 2 ∗ ((b)) 2 ∗ ((c))

The complete nested description of the string aabbccccbbaa is as follows:

S[(2 ∗ ((a))) (2 ∗ ((b))) (2 ∗ ((c)))]

The recursive application of ISA operators describes a string in terms of its regular-
ities and therefore it reduces the number of primitive elements that are needed to
describe the string. A description which cannot be analyzed further is called a final
description. Different final descriptions indicate different Gestalts of a string. For
example, abS[(a)(b)] and 2 ∗ (ab)ba indicate different Gestalts of the string ababba.

2.2. Information Load
In order to decide on the perceived structures of patterns, a complexity measure

called information load is introduced. Information load measures the complexity
of pattern descriptions by adding two quantities. The first quantity is the number
of occurrences of primitive elements in the description, and the second quantity is
the number of occurrences of chunks that contain more than one primitive element.
For example, the string abcddcab may be described as S[(ab)(c)(d)]; this (final)
description contains 4 primitive elements a, b, c and d and there is one chunk ab

that contains more than one primitive element. Therefore, the information load
of the description S[(ab)(c)(d)] is 4 + 1 = 5. Similarly, the string abcdcdab may
be described as S[(ab)(cd)] which has four primitive elements and two chunks that
contain more than one primitive element: ab and cd. The information load of this
description is 6. Note that the chunked elements need not be primitive elements.
For example, the string fabccabeabccabef may be analyzed as S[(f)(S[(ab)(c)](e))]
in which the non-primitive element S[(ab)(c)] constitutes one chunk together with
primitive element e. In this description, there are five primitive elements and two
chunks that contain more than one primitive element: S[(ab)(c)](e) and ab. The
information load for this description is 7. A detailed discussion of this complexity
measure can be found in (Van der Helm, Van Lier, & Leeuwenberg, 1992). The
following recursive definition is equivalent to their less formal description.

Definition 2.3. Let A be the set of primitive symbols, Ds be the domain of
strings over A, and t, t1, . . . , tn stand for arbitrary SIT descriptions of strings from
Ds in terms of the ISA operators. The information load function Isit, which assigns
natural numbers to SIT descriptions, can be recursively defined as follows:
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• if t ∈ A, then Isit(t) = 1
• Isit(m ∗ (t)) = Isit((t))
• Isit(S[(t1) · · · (tn)]) = Isit((t1) · · · (tn))
• Isit(S[(t1) · · · (tn), (t)]) = Isit((t1) · · · (tn)) + Isit((t))
• Isit(< (t) > / < (t1) · · · (tn) >) = Isit((t)) + Isit((t1) · · · (tn))
• Isit(< (t1) · · · (tn) > / < (t) >) = Isit((t)) + Isit((t1) · · · (tn))
• Isit((t)) = Isit(t) if t contains only one element from A;

= Isit(t) + 1 otherwise
• Isit(t1 · · · tn) =

∑n
i=1 Isit(ti)

The information load provides a measure for ordering the final descriptions of
a pattern. A final description of a pattern which has the lowest information load
is called a simplest description of that pattern. If there exists a unique simplest
description for a pattern, that description is considered as indicating the perceived
structure of the pattern. For example, 2 ∗ (ab)ba and abS[(a)(b)], which are two
possible final descriptions of the string ababba, have information loads 5 and 4,
respectively. Therefore, the final description abS[(a)(b)] is preferred over the final
description 2∗(ab)ba, which implies that ababba is preferably perceived as consisting
of ab and abba rather than as consisting of abab and ba. In contrast, if there exists
no unique simplest description for a pattern, then the pattern will be considered as
ambiguous, i.e. as having no definite perceptual structure. For example, aS[(b), (a)]
and 2 ∗ (ab), which are two possible final descriptions of the string abab, have the
same information load 3. Therefore, the string abab is considered as ambiguous. SIT
claims that if a pattern is not ambiguous and thus has a unique perceived structure,
then there is a unique SIT description with minimum information load for the
pattern, and vice versa. In the rest of this paper, we call this the uniqueness claim
of SIT. In the following we write Esit(s) to refer to the set of final SIT descriptions
of string s. The subset of Esit(S) that consists of SIT descriptions with minimum
information load according to definition 2.3 is denoted by Perceivedsit(s), i.e.

Perceivedsit(s) = {e ∈ Esit(s) | ∀e′ ∈ Esit(s) Isit(e) ≤ Isit(e′)}

The set Perceivedsit(s) is called the set of SIT-predicted structures of string s.

Definition 2.4. Let s be a string in Ds. The uniqueness claim of SIT can be
summarized as follows:

|Perceivedsit(s)| = 1 ⇔ s is not ambiguous

The explicit claim of SIT is that the perceived structures of a pattern are indi-
cated by its simplest descriptions. In this way, Structural Information Theory for-
malizes the Prägnanz notion of Gestalt psychology in terms of descriptive economy:
the information load of what is actually perceived is lower than the information load
of what could have been perceived alternatively.

2.3. Encoding of Line Patterns in SIT (Representation Hypothesis)
SIT is presented as a general theory of pattern perception and it is claimed to

be applicable to various domains of perceptual patterns (Leeuwenberg, 1971). A
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fundamental assumption of SIT is what may be called the representation hypothesis.
According to this hypothesis, perceptual patterns can be encoded as sequential
patterns (strings) in such a way that the ISA regularities of the sequential patterns
reflect the perceptual regularities of the encoded patterns. The perceptual structure
of patterns is thus assumed to be invariant under the encoding process. The strings
which encode perceptual patterns are called primitive codes.

For example, a monophonic piece of music consisting of an uninterrupted se-
quence of tones of equal durations is represented as a sequence of numbers, each
representing one pitch; an uninterrupted two-dimensional line pattern consisting of
connected line segments is represented as a sequence of letters, each representing
either the length of a line segment or the angle between two subsequent line seg-
ments. When line segments are not connected to each other, additional letters are
introduced to denote invisible line segments. For three-dimensional line patterns,
’roll’ and ’pan’ angles are distinguished.

SIT is mainly applied to uninterrupted two-dimensional line patterns consisting
of straight line segments. A primitive code for such a visual line pattern is con-
structed by choosing an appropriate starting point, tracing the line segments, and
concatenating symbols representing the successive lengths and their relative angles.
Examples of such representations are illustrated in Figure 3.

FIG. 3. Encoding line patterns as strings.

2.4. Limitations of the Coding Model
We have our doubts about the representation hypothesis of SIT even with respect

to line patterns. In Structural Information Theory and in its first computational
model (Van der Helm & Leeuwenberg, 1986), where the ISA reduction process is
partially implemented, the subjects of analysis are primitive codes (strings) instead
of visual line patterns. The step needed to represent an arbitrary visual line pattern
as a primitive code is, however, not a trivial one: for an arbitrary visual line pattern,
different primitive codes are possible.

The multiplicity of primitive codes can be explained by considering a line pattern
as a graph where line segments are edges and junctions of line segments are nodes.
A primitive code of a line pattern is then a full path (a path that contains all
edges and each edge visited exactly once) in its corresponding graph. It may be the
case that in the graph of a line pattern no full path exists at all. In such a case,
additional invisible line segments can be introduced such that full paths come to
exist. However, as the graph of a line pattern may contain loops, or nodes with
degrees greater than two (i.e. more than two edges ending in one node), several
different full paths, with corresponding primitive codes, may exist.

For example, consider the line pattern in Figure 4-A and note that the perceived
structure of this pattern consists of two squares and one diamond. For this pattern
many traces are possible depending on where the trace starts, how it continues, and
if invisible line segments are added. One possible trace of the line segments, without
introducing invisible line segments, is illustrated in Figure 4-C. Another trace is
illustrated in Figure 4-B, where an invisible line segment (dotted line segment) is
added.
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The problem with multiple primitive codes of visual line patterns is that different
primitive codes of a visual line pattern do not necessarily result in the same set of
final codes. This implies that the simplest description computed from an arbitrary
primitive code of a line pattern may not represent the perceived structure of the
visual line pattern. In other words, a wrong choice of primitive code results in a
wrong prediction of perceived structure. For example, the perceived structure of
Figure 4-A cannot be generated from the primitive code shown in Figure 4-C since
in this primitive code the perceived diamond is split into two parts.

FIG. 4. Two possible encodings of one line pattern.

The process of finding an appropriate primitive code for an arbitrary visual line
pattern is not a trivial process. The fact that in the Leeuwenberg tradition this pro-
cess is done by hand and is not included in the algorithm is an essential limitation.
One suggestion to solve this problem is obvious: the simplest description of a pat-
tern should be selected from the set of final descriptions that can be generated from
all possible primitive codes of that pattern. It should be noted that such a solution
implies that the computational complexity of the polynomial algorithm for finding
the perceived structure of strings, proposed by Van der Helm and Leeuwenberg,
becomes exponential (Van der Helm & Leeuwenberg, 1986).

There is also a more fundamental problem with this solution. Consider again
the visual line pattern shown in Figure 4-A. The perceived structure of this line
pattern can be generated from the primitive code 4-B, but not from the primitive
code 4-C. Nevertheless, primitive code 4-C yields a final description which has a
lower information load than any of the final descriptions of primitive code 4-B.
This observation implies that the simplest description generated from the set of all
primitive codes does not necessarily represent the perceived structure of a visual
line pattern.

All this does not imply, however, that the simplicity principle is a problematic
concept. The problem might reside in the representation hypothesis: the Gestalt
of the line pattern in Figure 4-A may not be the Gestalt of a linear sequence of its
line segments. Representing the line pattern in Figure 4-A as a sequence of its line
segments may introduce artefacts in the resulting analysis. We therefore make the
following conjecture.

Conjecture 1. The representation hypothesis of SIT, which states that ar-
bitrary line patterns can be represented as sequential patterns in such a way that
the SIT-predicted structure of the sequential patterns determines the SIT-predicted
structure of the encoded line patterns, is not correct.

The above considerations suggest that there is one constraint which must be
satisfied by a line pattern to make the representation hypothesis applicable: the
line pattern should have a set of demonstrably equivalent primitive codes. This
constraint is satisfied by line patterns in which the maximum number of line seg-
ments that meet at one point is two and for which there exist exactly two points at
which only one line segment ends. We call these patterns linear line patterns. They
can be characterized by graphs in which each edge represents one line segment,
there are exactly two nodes with degree one, and all other nodes have degree two.
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FIG. 5. Examples of linear line patterns.

In Figure 5, some examples of linear line patterns are shown. It should be observed
that in linear line patterns there are exactly two starting points from which the
sequence of concatenated line segments can be traced. These two starting points
result in two strings which are reflections of each other. It is easy to check that the
application of each ISA operator to a string and to its reflection results in the same
constituent structure and the same information load for both strings.

2.5. A Modification of the ISA Operators
Even if we restrict the scope of SIT to linear line patterns, some problems re-

main. In this section, we discuss these problems and propose a modification of
the ISA operators to avoid them. First of all, there is a formal problem which
arises because SIT treats lengths of line segments and angles between them in ex-
actly the same way. Because of this, the primitive code of a linear line pattern
with a repetitive structure cannot be obtained by applying the iteration operator
to an appropriate substring. To illustrate this problem, consider the linear line
pattern shown in Figure 3-B. Although this pattern has a repetitive structure, its
primitive code aαaβaαa cannot be generated by the iteration operator since the
subpattern aαa is iterated once more than the connecting angle β. In order to
solve this problem, we distinguish characters that encode lengths of line segments
from characters that encode angles, and use this distinction in defining the itera-
tion operator. In particular, we use a, b, . . . to encode lengths of line segments and
α, β, . . . to encode angles. Based on this distinction we define the iteration operator

as m ∗ (XY ) =

m timesX︷ ︸︸ ︷
XY · · ·Y X, where X is the primitive code of a linear line pattern

and Y is the angle that connects them. Thus, the subpattern X is iterated m times
while the angle Y is iterated m− 1 times.

The second problem is an empirical one. We cannot subscribe to the SIT claim
that all ISA regularities are equally relevant when we consider the class of linear
line patterns. In particular, we have a problem with this claim with respect to the
alternation regularity which describes a pattern as consisting of two subpatterns.
For instance, the expression < (X) > / < (X1) · · · (Xn) > describes the pattern
XX1XX2 · · ·XXn as consisting of two subpatterns (X) and (X1) · · · (Xn). This
implies that the regularity of the subpattern (X1) · · · (Xn) is assumed to be visible
and thus relevant for the overall perceived structure of the pattern.

FIG. 6. The regularity among alternating elements is not perceived.

We can construct many examples of linear line patterns which do not support
this claim. For example, consider the linear line pattern illustrated in Figure 6.
This pattern can be described as < (A) > / < (A1)(A2)(A3)(A4)(A2)(A5) >.
The second argument (A1)(A2)(A3)(A4)(A2)(A5) contains a regularity since the
subpattern (A2)(A3)(A4)(A2) can be described as having a symmetry structure,
i.e. S[((A2))((A3)(A4))]. However, our experience suggests that the regularity of
this subpattern in Figure 6 is perceptually not relevant. Therefore, we modify the
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alternation operator in such a way that the regularity among alternating elements
cannot be captured anymore. This can be done by isolating alternating elements
and considering them as separate subpatterns to which the alternation operator is
applied. This modification results in n + 1-ary alternation operators where each
alternating element is considered as one argument (see definition 2.6). Following
this formulation of the alternation operators, the linear line pattern illustrated in
Figure 6 can be described by the right alternation operator as:

< (A) > / < (A1), (A2), (A3), (A4), (A2), (A5) >

The third problem is a subtle issue concerning the alternation operators. These
operators are sensitive with respect to the regularity of angles between the constant
subpattern X and the alternating subpatterns X1, . . . , Xn. For example, consider
aαb1β1aαb2β2aαb3 to be the primitive code of a linear line pattern. The linear line
pattern can be described by the modified right alternation operator in the following
two ways:

1- < (a) > / < (αb1β1), (αb2β2), (αb3) >

2- < (aα) > / < (b1β1), (b2β2), (b3) >

Both analyses are perceptually equivalent since they provide the same constituent
structure of the linear line pattern, i.e. the linear line pattern consists of occurrences
of line segment a that are alternated by line segments b1, b2, and b3. Nevertheless,
the information loads of the two analyses are different, such that the second analysis
is preferred over the first perceptually identical analysis. In order to avoid this
non-intuitive property, we require that the constant subpattern of the alternation
structure does always end with a line segment rather than an angle. This implies
that the right alternation operator works as in formulation 1 above. The same
argument holds for the left alternation operator.

Moreover, in the original version of SIT parentheses are used in the primitive
codes to indicate the chunking structure of encoded line patterns in terms of con-
stituting line patterns. Since in the modified version of SIT the characters that en-
code line segments and angles are distinguished, the parentheses can in principle be
applied to parts of primitive codes that start and end with an angle. However, these
primitive codes do not encode line patterns (line patterns start and end with line
segments) such that the parentheses do not indicate the chunking structure in terms
of constituting line patterns. For this reason, we consider (Y XY ′) and Y (X)Y ′ as
perceptually equivalent for any primitive code X and angles Y and Y ′; also prim-
itive codes (Y X) and Y (X) and primitive codes (XY ′) and (X)Y ′ are assumed
to be perceptually equivalent. This implies that primitive code aαb1β1aαb2β2aαb3

can be described by the right alternation operator as follows:

3- < (a) > / < α(b1)β1, α(b2)β2, α(b3) >

The information load of formulation 3 differs from the information load of for-
mulation 1. In particular, the information load of each (αbiβi) is higher than the
information load of each corresponding α(bi)βi since the first is a chunk consist-
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ing of more than one element. This is, however, a deliberate divergence from the
original version of SIT because we assume here that the chunking structure is only
relevant with respect to line patterns. Note that when the alternating arguments
are primitive codes of linear line patterns with more than one line segment, then
the information loads of formulations 1 and 3 are the same.

The last problem is the sensitivity of the odd symmetry operator with respect
to the regularity of the two angles that connect the symmetrical parts to the pivot
element. For example, consider aαaβbβaαa to be the primitive code of a linear line
pattern. In the original SIT, this linear line pattern can be described by the odd
symmetry operator according to the following two formulations:

1’) S[(a)(α)(a) , β(b)β]
2’) S[(a)(α)(a)(β) , (b)]

Again, although both analyses are perceptually identical (i.e. the linear line
pattern consists of two symmetrical halves, which are encoded by aαa, and the
pivot element, which is encoded by b), their information loads are different. As
with the alternation structures, we require that the symmetrical halves of the odd
symmetry structure does always end with a line segment, and not with an angle.
This implies that the odd symmetry operator works as formulation 1’. In the
following, we first provide a formal definition of the domain of primitive codes of
linear line patterns and then define the modified version of the ISA operators.

Definition 2.5. Let Aseg be the set of primitive elements that denote lengths
of line segments, and Aang be the set of primitive elements that denote angles:
Aseg ∩ Aang = ∅. The domain Dc of primitive codes of linear line patterns over
Aseg ∪Aang is defined as follows:

• Aseg ⊂ Dc

• If X1, . . . , Xn ∈ Dc and Y1, . . . , Yn−1 ∈ Aang, then X1Y1 · · ·Yn−1Xn ∈ Dc

• If X ∈ Dc, then (X) ∈ Dc

In our examples, we will choose Aseg to be the set of lower case letters of the
English alphabet, i.e. Aseg = {a, b, . . .}, and Aang to be the set of lower case letters
of the Greek alphabet, i.e. Aang = {α, β, . . .}. Note that the domain of primitive
codes of linear line patterns does not only contain sequences of primitive symbols;
primitive codes may also contain (possibly nested) parentheses.

Definition 2.6. Let m stand for any natural number greater than one; let
X, X1, . . . , Xn stand for arbitrary elements of Dc; and let Y, Y1, . . . , Yn, Y ′

1 , . . . , Y ′
n

stand for arbitrary elements of Aang. For n ≥ 1, the ISA operators are modified as
follows.
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- m ∗ (XY ) =

m times X︷ ︸︸ ︷
XY · · ·Y X

- S[(X1)(Y1) · · · (Yn−1)(Xn) , Y ] = X1Y1 · · ·Yn−1XnY XnYn−1 · · ·Y1X1

- S[(X1)(Y1) · · · (Yn−1)(Xn) , Y ′
1(X)Y ′

2 ] = X1Y1 · · ·Yn−1XnY ′
1XY ′

2XnYn−1 · · ·Y1X1

- < (X) > / < (Y1)(X1)(Y ′
1) , . . . , (Yn)(Xn) >= XY1X1Y

′
1X · · ·XYnXn

- < (X1)(Y ′
1) , . . . , (Yn−1)(Xn)(Y ′

n) > / < (X) >= X1Y
′
1X · · ·XYn−1XnY ′

nX

In this definition, two cases for the symmetry operator are distinguished. The
first case generates primitive codes of linear line patterns that have even symmetry
structure, i.e. the symmetrical halves are connected to each other by an angle.
The second case generates primitive codes of linear line patterns that have odd
symmetry structure, i.e. the symmetrical halves are connected to each other by a
pivot element.

In the sequel, we use MSIT to refer to the modified version of Structural Infor-
mation Theory that is based on the domain of primitive codes and the modified
ISA operators. The descriptions of primitive codes by means of the modified ISA
operators will be called MSIT descriptions. We now need to redefine the informa-
tion load function such that it can be applied to MSIT descriptions. The following
definition of information load is in accordance with its original idea and counts the
number of primitive elements and the number of chunks that contain more than
one primitive element in pattern descriptions.

Definition 2.7. Let t, t1, . . . , tn stand for arbitrary MSIT descriptions and let
Y, Y1, . . . , Yn, Y ′

1 , . . . , Y ′
n stand for arbitrary elements of Aang. The information load

function Imsit, which assigns natural numbers to MSIT descriptions, can be defined
as follows:

• Imsit(t) = 1 if t ∈ Aseg ∪Aang

• Imsit(m ∗ (tY )) = Imsit(t) + Imsit(Y ) + 1
• Imsit(S[(t1)(Y1) · · · (Yn−1)(tn) , Y ]) = Imsit((t1)Y1 · · ·Yn−1(tn)) + Imsit(Y )
• Imsit(S[(t1)(Y1) · · · (Yn−1)(tn) , Y ′

1(t)Y ′
2 ]) =

Imsit((t1)Y1 · · ·Yn−1(tn)) + Imsit(t) + Imsit(Y ′
1) + Imsit(Y ′

2) + 1
• Imsit(< (t) > / < (Y1)(t1)(Y ′

1) , . . . , (Yn)(tn) >) =
Imsit((t)) +

∑n
i=1 Imsit((ti)) +

∑n
i=1 Imsit(Yi) +

∑n−1
i=1 Imsit(Y ′

i )
• Imsit(< (t1)(Y ′

1) , . . . , (Yn−1)(tn)(Y ′
n) > / < (t) >) =

Imsit((t)) +
∑n

i=1 Imsit((ti)) +
∑n−1

i=1 Imsit(Yi) +
∑n

i=1 Imsit(Y ′
i )

• Imsit((t)) = Imsit(t) if t contains only one element from Aseg ∪Aang;
= Imsit(t) + 1 otherwise

• Imsit(t1Y1 · · ·Yn−1tn) =
∑n

i=1 Imsit(ti) +
∑n−1

i=1 Imsit(Yi)

In this definition, the information loads for the iteration operator and the odd
symmetry operator are one higher than the sum of the information loads of their
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arguments. Two considerations are involved in this decision. First, according to
the definition of ISA operators and their modifications the argument of the itera-
tion operator and the pivot element of the symmetry operator are considered to be
chunks.1 Second, according to the modified version of ISA operators, these argu-
ments contain always more than one element from Aseg ∪Aang. As the information
load of a chunk containing more than one primitive element is one higher than the
sum of the information loads of the primitive elements, the information loads for
the iteration and the second symmetry operators should be one higher than the
sum of the information loads of their arguments. Note that the parentheses around
Yi and Y ′

i on the righthand side of equations are removed since the information
load of one element from Aang within parentheses is the same as the information
load of that element without parentheses.

It is important to note that the definitions 2.3 and 2.7 of information loads are
equivalent when we consider the description of primitive codes used in definition
2.7 as the descriptions of strings used in definition 2.3. For example, consider the
MSIT description m ∗ (aα). The information load of m ∗ (aα) is the same in both
definitions, i.e. Isit(m ∗ (aα)) 2.3= Isit((aα)) 2.3= Isit(aα)+1 2.3= 3 2.7= Imsit(aα)+1 2.7=
Imsit((aα)) 2.7= Imsit(m ∗ (aα)). The reader should verify this for other MSIT
descriptions. We can now articulate a reformulation of SIT’s original empirical
claim.

Conjecture 2. The representation hypothesis of SIT is correct for linear line
patterns, if we employ MSIT descriptions and the modified information load func-
tion. In other words, for any linear line pattern L with primitive code s, the SIT-
predicted structures of L, denoted by the set Perceivedmsit(s), are represented by
the MSIT expressions that describe s and have minimum complexity value, i.e.

Perceivedmsit(s) = {e ∈ Emsit(s) | ∀e′ ∈ Emsit(s) Imsit(e) ≤ Imsit(e′)}

where Emsit(s) is the set of final MSIT descriptions of primitive code s. Moreover,
the uniqueness claim can be reformulated as follows:

|Perceivedmsit(s)| = 1 ⇔ L is not ambiguous

3. LSP: A LANGUAGE FOR GESTALTS OF SEQUENTIAL
PATTERNS

In this section, we finish our reformulation of SIT by describing the formal lan-
guage LSP (Language for Gestalts of Sequential Patterns). LSP is essentially
equivalent to MSIT, but employs a more uniform and explicit notation. The LSP
expressions denote sequential patterns in general and primitive codes of linear line
patterns in particular. They are defined inductively, resulting in nested structures.

1For example, the information load of 2 ∗ (ab) is 3 since ab is considered to be one chunk, and
the information load of S[(a), (cd)] is 4 since cd is considered to be one chunk.
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The nested structure of a LSP expression indicates a hierarchical organization of
the denoted primitive code, and thus a perceptual organization of the encoded
pattern.

In order to represent symmetry structures, two distinct operators, called Even-
symmetry (Syme) and Odd-symmetry (Symo), are introduced in LSP. The first
represents symmetrical patterns that do not contain a pivot element, and the second
represents symmetrical patterns that do contain a pivot element. Also, we introduce
the chunk operator (Chunk) to represent the chunk structure of patterns and the
concatenation operator (Con) to represent the concatenation structure of patterns.

Definition 3.1. [Syntax of LSP] Let Aseg be the set of characters that encode
lengths of line segments, Aang be the set of characters that encode angles, and N
be the set of natural numbers. Let Iter, Syme, Symo, Altr, Altl, Chunk, and Con

be operator names, corresponding with Iteration, Even-symmetry, Odd-symmetry,
Right-alternation, Left-alternation, Chunk, and Concatenation, respectively. Then,
the expressions of LSP are recursively defined as follows:

1. Aseg ⊂ LSP
2. If t ∈ LSP, y ∈ Aang, and m ∈ N, then

Iter(t, y,m) ∈ LSP
3. If t, t1, t2 ∈ LSP, y, y′ ∈ Aang, then

Syme(t, y) ∈ LSP and
Symo(t1, t2, y, y′) ∈ LSP

4. If t, t1, . . . , tn ∈ LSP, y1, . . . , yn, y′1, . . . , y
′
n ∈ Aang, then

Altr(t, t1, . . . , tn, y1, . . . , yn, y′1, . . . , y
′
n−1) ∈ LSP and

Altl(t, t1, . . . , tn, y1, . . . , yn−1, y
′
1, . . . , y

′
n) ∈ LSP

5. If t ∈ LSP, then
Chunk(t) ∈ LSP

6. If t1, . . . , tn ∈ LSP and y1, . . . , yn−1 ∈ Aang, then
Con(t1, y1, . . . , yn−1, tn) ∈ LSP

Again, for our examples we will choose Aseg to be the set of lower case letters
of the English alphabet, i.e. Aseg = {a, b, . . .}, and Aang to be the set of lower case
letters of the Greek alphabet, i.e. Aang = {α, β, . . .}. The following expressions are
examples of LSP expressions:

- Con(a, α, b, β, c)
- Iter(Syme(a, α), β, 3)
- Syme(Altl(a,Con(b, α, c), d, β1, β2, γ), δ)
- Iter(Symo(Chunk(Con(a, α, b)), Con(c, β, d), γ1, γ2), λ, 2)

The semantics of LSP expressions is defined in terms of the corresponding mod-
ified ISA operators (definition 2.6) and the domain of primitive codes (definition
2.5). However, the recursive application of the ISA operators is problematic with
respect to the symmetry operator. The problem is that the first argument of the
symmetry operators should be of the form (X1) · · · (Xn) (a sequence of primitive
codes within parentheses). This means that the evaluation of the LSP expression
t in Syme(t, y) and Symo(t, t′, y, y′) should provide a primitive code of the form
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(X1) · · · (Xn). For this reason, we add parentheses around all primitive elements
that occur in the value of t and that are not already within parentheses. We thus
define a new symmetry operator S∗ as follows:

S∗[X1 · · ·Xn , Y ] = S[(X ′
1) · · · (X ′

n) , Y ]
S∗[X1 · · ·Xn , Y (X)Y ′] = S[(X ′

1) · · · (X ′
n) , Y (X)Y ′]

where for 1 ≤ i ≤ n it holds that Xi = X ′
i if Xi ∈ Aseg ∪ Aang; otherwise

Xi = (X ′
i). Note that adding parentheses around primitive elements does not

increase the information load.

Definition 3.2. [Semantics of LSP] Let Dc be the domain of primitive codes as
in definition 2.5, t, ti ∈ LSP for 1 ≤ i ≤ n, and y, y′, yj , y

′
j ∈ Aang for 1 ≤ j ≤ n.

Then, the semantic function |[ · |], which maps LSP expressions to primitive codes
from Dc, is defined as follows.

1. If t ∈ Aseg ∪Aang, then |[t|] = t

2. |[Iter(t, y,m)|] = m ∗ ( |[t|]|[y|] )
3. |[Syme(t, y)|] = S∗[ |[t|] , |[y|] ]
4. |[Symo(t1, t2, y, y′)|] = S∗[ |[t1|] , |[y|](|[t2|])|[y′|] ]
5. |[Altr(t, t1, . . . , tn, y1, . . . , yn, y′1, . . . , y

′
n−1)|] =

< (|[t|]) > / < |[y1|](|[t1|])|[y′1|] , . . . , |[yn|](|[tn|]) >

6. |[Altl(t, t1, . . . , tn, y1, . . . , yn−1, y
′
1, . . . , y

′
n)|] =

< (|[t1|])|[y′1|] , . . . , |[yn−1|](|[tn|])|[y′n|] > / < (|[t|]) >

7. |[Chunk(t)|] = ( |[t|] )
8. |[Con(t1, y1, . . . , yn−1, tn)|] = |[t1|]|[y1|] . . . |[yn−1|]|[tn|]

The following example illustrates the semantic evaluation of a LSP expression.

|[Iter(Syme(a, α), β, 3)|] = 3 ∗ (|[Syme(a, α)|]|[β|]) = 3 ∗ (S∗[|[a|], |[α|]]β) =
3 ∗ (S∗[a, α]β) = 3 ∗ (S[(a), α]β) = 3 ∗ ((a)α(a)β) = (a)α(a)β(a)α(a)β(a)α(a)

Two LSP expressions are extensionally equal if and only if they both denote
the same primitive code. Extensionally equal LSP expressions constitute different
Gestalts of one linear line pattern. Structural Information Theory can be described
in terms of the LSP language together with a complexity function I lsp, which
assigns a natural number to every LSP expression. This function is designed in
such a way that the LSP expressions and their corresponding MSIT expressions
have the same information load.

Definition 3.3. Let t, ti ∈ LSP for 1 ≤ i ≤ n; let y, y′, yj , y
′
j ∈ Aang for

1 ≤ j ≤ n; and let m ∈ N. The information load of a LSP expression is the natural
number that is assigned to it by the I lsp function. The I lsp function is defined as
follows:

1. I lsp(t) = 1 if t ∈ Aseg ∪Aang

2. I lsp(Iter(t, y, m)) = I lsp(t) + I lsp(y) + 1
3. I lsp(Syme(t, y)) = I lsp(t) + I lsp(y)
4. I lsp(Symo(t1, t2, y, y′)) = I lsp(t1) + I lsp(t2) + I lsp(y) + I lsp(y′) + 1
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5. I lsp(Altr(t, t1, . . . , tn, y1, . . . , yn, y′1, . . . , y
′
n−1)) =

I lsp(Chunk(t)) +
∑n

i=1 I lsp(Chunk(ti)) +
∑n

i=1 I lsp(yi) +
∑n−1

i=1 I lsp(y′i)
6. I lsp(Altl(t, t1, . . . , tn, y1, . . . , yn−1, y

′
1, . . . , y

′
n)) =

I lsp(Chunk(t)) +
∑n

i=1 I lsp(Chunk(ti)) +
∑n−1

i=1 I lsp(yi) +
∑n

i=1 I lsp(y′i)
7. I lsp(Chunk(t)) = I lsp(t) if t contains only one element from Aseg ∪Aang;

= I lsp(t) + 1 otherwise
8. I lsp(Con(t1, y1, . . . , yn−1, tn)) =

∑n
i=1 I lsp(ti) +

∑n−1
i=1 I lsp(yi)

In this definition, the information loads for Iter and Symo expressions are one
higher than the sum of the information loads of their constituents. This decision
is based on the same considerations that were involved in defining the information
load function for the modified ISA operators (see definition 2.7). Moreover, the
information load of the right and left alternation expressions is defined in terms of
the sum of the information loads of their arguments that are reformulated as chunk
expressions. The arguments are reformulated as chunk expressions because these
arguments in the original and modified ISA operators are considered to be chunks.
We reformulate these arguments, rather than increasing the information loads of
alternation expressions (as done with Iter and Symo), because the arguments can
be primitive elements in which case the information loads should not be increased.

In the following, we write Elsp(s) to refer to the set of LSP expressions that
denote primitive code s in Dc, i.e. Elsp(s) = {e ∈ LSP | |[e|] = s}. The subset of
Elsp(s) consisting of LSP expressions with minimum complexity value according
to definition 3.3 is denoted by Perceivedlsp(s), i.e.

Perceivedlsp(s) = {e ∈ Elsp(s) | ∀e′ ∈ Elsp(s) I lsp(e) ≤ I lsp(e′)}

The set Perceivedlsp(s) is called the LSP-predicted structures of primitive code s.

Theorem 3.1. For any linear line pattern L with primitive code s, the SIT-
predicted structures of L are represented by the expressions from Perceivedlsp(s).

Proof. For an arbitrary linear line pattern L and its primitive code s the
SIT-predicted structures of L are determined by Perceivedmsit(s) (see conjecture
2). We now need to show that for any primitive code s, Perceivedmsit(s) and
Perceivedlsp(s) represent perceptual structures that pairwise have the same con-
stituent structure and have the same information load, i.e. there exists a bijective
function f : Perceivedlsp(s) → Perceivedmsit(s) such that:

1. ∀e ∈ Perceivedlsp(s) : e and f(e) have the same constituent structure,
2. ∀e ∈ Perceivedlsp(s) : I lsp(e) = Imsit(f(e))

The function |[ · |], specified in definition 3.2, is such a bijective function which maps
Emsit(s) to Elsp(s) for any arbitrary s ∈ Dc.
1) Function |[ · |] preserves the constituent structure of corresponding elements of
Emsit(s) and Elsp(s) since the number of arguments of the modified ISA operators
that are primitive codes of linear line patterns, and the number of arguments of the
corresponding LSP expression that denote primitive codes of linear line patterns,
are the same.
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2) The following equalities show that function |[ · |] preserves the information load
of corresponding elements of Emsit(s) and Elsp(s) as well.

I lsp(t ∈ Aseg ∪Aang) = 1 = Imsit(|[t|] ∈ Aseg ∪Aang)

I lsp(Iter(t, y,m)) = I lsp(t) + I lsp(y) + 1 = Imsit(|[t|]) + Imsit(|[y|]) + 1 =
Imsit(m ∗ (|[t|]|[y|]))

I lsp(Syme(t, y)) = I lsp(t) + I lsp(y) = Imsit(|[t|]) + Imsit(|[y|]) = Imsit(S[|[t|], |[y|]])

I lsp(Symo(t1, t2, y, y′)) = I lsp(t1) + I lsp(t2) + I lsp(y) + I lsp(y′) + 1 =
Imsit(|[t1|]) + Imsit(|[t2|]) + Imsit(|[y|]) + Imsit(|[y′|]) + 1 =
Imsit(|[t1|]) + Imsit((|[y|]|[t2|]|[y′|])) = Imsit(S[|[t1|], |[y|](|[t2|])|[y′|]])

I lsp(Altr(t, t1, . . . , tn, y1, . . . , yn, y′1, . . . , y
′
n−1)) =

I lsp(Chunk(t)) +
∑n

i=1 I lsp(Chunk(ti)) +
∑n

i=1 I lsp(yi) +
∑n−1

i=1 I lsp(y′i) =
Imsit((|[t|])) +

∑n
i=1 Imsit((|[ti|])) +

∑n
i=1 Imsit(|[yi|]) +

∑n−1
i=1 Imsit(|[y′i|]) =

Imsit(< (|[t|]) > / < |[y1|](|[t1|])|[y′1|], . . . , |[yn|](|[tn|]) >)

I lsp(Altl(t, t1, . . . , tn, y1, . . . , yn−1, y
′
1, . . . , y

′
n)) =

I lsp(Chunk(t)) +
∑n

i=1 I lsp(Chunk(ti)) +
∑n−1

i=1 I lsp(yi) +
∑n

i=1 I lsp(y′i) =
Imsit((|[t|])) +

∑n
i=1 Imsit((|[ti|])) +

∑n−1
i=1 Imsit(|[yi|]) +

∑n
i=1 Imsit(|[y′i|]) =

Imsit(< (|[t1|])|[y′1|], . . . , |[yn−1|](|[tn|])|[y′n|] > / < (|[t|]) >)

For Chunk expressions, there are two cases.
Case 1: t contains more than one elements from Aseg ∪Aang

I lsp(Chunk(t)) = I lsp(t) + 1 = Imsit(|[t|]) + 1 = Imsit((|[t|]))
Case 2: otherwise
I lsp(Chunk(t)) = I lsp(t) = Imsit(|[t|]) = Imsit((|[t|]))

I lsp(Con(t1, y1, . . . , yn−1, tn)) =
∑n

i=1 I lsp(ti) +
∑n−1

i=1 I lsp(yi)∑n
i=1 Imsit(|[ti|]) +

∑n−1
i=1 Imsit(|[yi|]) = Imsit(|[t1|]|[y1|] · · · |[yn−1|]|[tn|])

The following theorem assumes the uniqueness claim and states that under this
assumption if a linear line pattern is not ambiguous, i.e. if a linear line pattern has
a unique perceived structure, then there is a unique LSP expression with minimum
complexity value that denotes the linear line pattern and vice versa.

Theorem 3.2. Under the uniqueness claim assumption and for a linear line
pattern L with primitive code s :

|Perceivedlsp(s)| = 1 ⇔ L is not ambiguous

Proof. Conjecture 2 and Theorem 3.1 state that the SIT-predicted structures of
any linear line pattern L with primitive code s are represented by Perceivedmsit(s)
and Perceivedlsp(s), respectively. This implies |Perceivedmsit(s)| = |Perceivedlsp(s)|
for any linear line pattern L with primitive code s. Then, according to the unique-
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ness claim L is not ambiguous if and only if |Perceivedmsit(s)| = 1. This concludes
that any linear line pattern with primitive code s is not ambiguous if and only if

|Perceivedlsp(s)| = 1.

4. A REPRESENTATION SYSTEM FOR TWO-DIMENSIONAL
LINE PATTERNS

According to SIT, perceptual structures of sensory patterns can be described in
terms of ISA regularities among pattern parts, which are in turn defined in terms
of the identity of pattern parts. Recall that for the class of line patterns, lengths of
line segments and angles between them were considered as primitive pattern parts.
In section 2.4, we showed that the linearisation of patterns proposed by SIT can
only be applied properly to the limited class of linear line patterns. In the current
section, we propose an alternative to the linearisation approach and extend the SIT
approach to a more general class of line patterns.

In the sequel, we limit our analyses and examples to connected line patterns. The
class of connected line patterns can be characterized by graphs in which each graph
edge represents one line segment and all graph nodes can be reached from all other
graph nodes through a path in the graph. Note that there are no constraints on the
degrees of the nodes and that the class of connected line patterns includes the class
of linear line patterns. A simple example of a connected line pattern is illustrated
in Figure 7. Although the analyses and examples are limited to connected line
patterns, the representation system that we introduce is designed to represent the
perceptual structures of the general class of line patterns, i.e. line patterns in
which line segments need not to be connected. The reason we limit our analyses
and examples to connected line patterns is the nonavailability of an empirically
supported complexity measure for the general class of line patterns. This issue is
explained later in more detail.

In order to apply SIT directly to line patterns, we define ISA regularities in terms
of spatial relations between line segments. We represent a line segment as a pair
< pos1, pos2 >, where pos1 and pos2 are the two-dimensional positions of its two
end points. The spatial relations between line segments are in turn defined in terms
of Euclidean transformations (i.e. Euclidean rotation, translation, reflection, and
their compositions) between their two-dimensional position values. A line pattern
is represented as a set of position pairs. Moreover, in order to capture the special
kind of symmetrical patterns in which not individual line segments but chunks of
line segments are reflected, we mark chunked line segments by labelling them with
chk. This corresponds to the use of parentheses in the domain of primitive codes
of linear line patterns.

Definition 4.1. Let Aposp = {< pos1, pos2 > | pos1, pos2 ∈ R × R} be the set
of position pairs. The domain D of two-dimensional line patterns over Aposp is
defined as follows:

• if x ∈ Aposp, then {x} ∈ D

• if x1, . . . , xn ∈ D and n ≥ 2, then
⋃n

i=1 xi ∈ D

• if {x1, . . . , xn} ∈ D and n ≥ 2, then {chk(x1, . . . , xn)} ∈ D
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Line segments can be described in terms of each other by means of Euclidean
translation, rotation and reflection transformations. As in the original version of
SIT, the identity of line segments is based on their lengths: two line segments
are identical if they have the same length. Since the lengths of line segments are
invariant under Euclidean transformations, two line segments are identical if they
can be described in terms of each other by means of Euclidean transformations. The
difference between this approach and the original one is the removal of the angles
from the coding system and their replacement by Euclidean transformations. The
sequential tracing of the line segments is not a part of the encoding process anymore.
In this way, we avoid the problems and limitations of SIT’s original and modified
coding model.

FIG. 7. An example of a connected line pattern.

For example, consider the square illustrated in Figure 7. It is represented by the
following set of position pairs (i.e. line segments):

{< p1, p2 > , < p2, p3 > , < p3, p4 > , < p4, p1 >}.

The line segment < p2, p3 > can be described in terms of the line segment < p1, p2 >

and a rotation with respect to the center of the square. The segment < p3, p4 >

can be described in terms of < p2, p3 > and the same rotation transformation, and
finally, < p4, p1 > in terms of < p3, p4 > and the same rotation transformation.
The iterative application of the same transformation exemplifies the kind of pattern
regularity which will be captured by the representation system proposed here. It is
in a sense a two-dimensional analogue of the repetition operation in SIT’s domain
of one-dimensional primitive codes. In order to define two-dimensional pattern
regularity, we need to define the application of Euclidean transformations to line
patterns.

Definition 4.2. The application of a Euclidean transformation τ to a two-
dimensional line pattern L is defined as τ(L) = {τ(< pi, pj >) | < pi, pj >∈ L};
the application of τ to a line segment < p1, p2 > is defined as τ(< p1, p2 >)
= < τ(p1), τ(p2) >; finally, the application of τ to a two-dimensional position
p = (x, y), which results in another two-dimensional position p′ = (x′, y′), will be
written as τ(p) = p′. Moreover, we write τ i to indicate a nested application of τ

with depth i. For example, τ4(p) = τ(τ(τ(τ(p)))) for the two-dimensional position
p. For i = 0, this yields the identity transformation: τ0(p) = p.

4.1. Iteration Structure
The first class of regular structures for two-dimensional line patterns is the class

of iteration structures. A line pattern L has the iteration structure if it can be
described as the union of m subsets L1, . . . , Lm such that all subsets can be obtained
by iterative application of a Euclidean transformation τ to one of the subsets L1,
i.e., Li = τ i−1(L1).
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FIG. 8. Position-based iteration structure.

An example of this type of pattern was given above in Figure 7. Another example
is illustrated in Figure 8 which is a triangle iterated twice. It is represented by the
following set of position pairs:

{< p1, p2 >,< p2, p3 >,< p3, p1 >,< p3, p4 >,< p4, p5 >,< p5, p3 >}

This set of position pairs can be described in terms of 2 subsets of position pairs
such that one can be described in terms of the other and a Euclidean translation.
These subsets and the Euclidean translation are as follows:

L1 = {< p1, p2 >,< p2, p3 >, < p3, p1 >}
L2 = {< p3, p4 >,< p4, p5 >, < p5, p3 >}
ω is the translation transformation defined on positions p = (px, py) as follows:
ω(px) = px + |x2 − x1|
ω(py) = py

Note that L2 is obtained by applying the translation transformation ω to L1. In
general, given a Euclidean transformation ω composed of translation and rotation,
and a line pattern represented by L, the following set that contains m occurrences
of L represents a line pattern that can be analyzed as having the iteration structure:

m−1⋃

i=0

ωi(L)

4.2. Symmetry Structure
The second class of regular structures for two-dimensional line patterns is the

class of symmetry structures. A line pattern has the symmetry structure if it can
be partitioned into two subsets such that one subset can be obtained by applying
a Euclidean reflection transformation to the other subset.

FIG. 9. A visual pattern with symmetry structure.

For example, consider the pattern illustrated in Figure 9. This pattern has
the symmetry structure, i.e. the two triangles are reflections of each other. It
is represented by the following set of position pairs:

{< p1, p2 >,< p2, p3 >,< p3, p1 >,< p3, p4 >,< p4, p5 >,< p5, p3 >}

This set of position pairs can be partitioned into two subsets of position pairs such
that one can be described in terms of the other and a Euclidean reflection trans-
formation:

L1 = {< p1, p2 >,< p2, p3 >, < p3, p1 >}
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L2 = {< p3, p4 >,< p4, p5 >, < p5, p3 >}
ψ is the reflection transformation defined on positions p = (px, py) as follows:
ψ(px) = 2 ∗ x2 − px

ψ(py) = py

Note that L2 is obtained by applying the reflection transformation ψ to L1. In
general, given a Euclidean reflection transformation ψ and a set L representing a
line pattern, the following set represents a line pattern that can be analyzed as
having the symmetry structure:

L
⋃

ψ(L)

4.3. Chunk Structure
The notion of chunk is introduced to define a special kind of symmetrical pattern

in which not individual primitive elements but chunks of primitive elements are
reflected. The reflection of chunked elements preserves their mutual spatial relation.
In fact, the reflection of chunked elements is similar to their translation relative to
the reflection axis. For example, Figure 10 can be described as consisting of two
polygons in which < p1, p2 > and < p2, p3 > are chunked, and < p5, p6 > and
< p6, p7 > are chunked. The mutual spatial relation between the segments of the
chunks in both polygons is preserved under the reflection transformation. Note that
this kind of grouping operation is commonly used in computer graphic programs.
It is needed when some parts of symmetrical halves are intended not to be mirror
images of each other. These parts may be text objects, a human face, or other
natural pictures.

FIG. 10. The spatial relation between chunked line segments is preserved in the symmetrical
halves.

As mentioned, we indicate the chunks of position pairs by labelling them with
chk. Thus, the following set of position pairs represents the line pattern illustrated
in Figure 10:

{ chk(< p1, p2 >, < p2, p3 >), < p1, p4 >, < p3, p4 >,

chk(< p5, p6 >, < p6, p7 >), < p4, p5 >, < p4, p7 > }.

4.4. Alternation Structure
Alternation is regularity of patterns that are inherently sequential. In particu-

lar, a sequential pattern has alternation regularity if it consists of one sequential
subpattern alternated by other sequential subpatterns. Therefore, alternation reg-
ularity makes only sense with respect to the subclass of linear line patterns that are
inherently sequential, and not the general class of line patterns. For example, the
primitive code aβ1bβ2cβ3aβ4d has an alternation structure since the primitive code
a is alternated by the codes β1bβ2cβ3, and β4d. This structure is described by apply-
ing the modified right alternation operator, i.e. < (a) > / < β1(bβ2c)β3, β4(d) >.
Note in this case that the alternation regularity captures only the regularity of the
length of the line segment a.
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Since in our coding model the representations of iterating parts are not inter-
spersed among the representations of alternating parts (set representation versus
string representation), one may argue that no additional alternation operator is
needed to capture pattern regularity; alternation regularity of patterns, which is
iteration regularity, can be captured by the iteration operator. However, because
we aim at generating the structural descriptions for linear line patterns as well, we
include alternation structure and add an alternation operator in our coding model.
It is important to note that the alternation operator makes only sense with respect
to linear line patterns and, therefore, it will be applied only to linear line patterns.
In contrast to sequential patterns such as strings, left and right alternations will
not be distinguished since the representations of alternating elements determine
where they are placed in the two-dimensional space and thus do not depend on the
representation of the iterating elements.

A linear line pattern has the alternation structure if it can be described as 2 ∗m

subsets of line segments such that m−1 subsets can be obtained by applying m−1
Euclidean transformations composed of translations and rotations to one of the
subsets. Each of the other m subsets is an alternating element. Consider the linear
line pattern illustrated in Figure 11.

FIG. 11. An example of a linear line pattern which has alternation structure.

This pattern is represented by the following set of position pairs:
{< p1, p2 >,< p2, p3 >,< p3, p4 >,< p4, p5 >, < p5, p6 >,< p6, p7 >,< p7, p8 >,

< p8, p9 >,< p9, p10 >,< p10, p11 >,< p11, p12 >}
This set of position pairs can be described in terms of 2*3 subsets L1, L2, L3, L4, L5

and L6 such that L2 and L3 can be described in terms of L1 and two Euclidean
translation transformations, and L4, L5 and L6 are the alternating parts. These
subsets are as follows:

L1 = { < p1, p2 >,< p2, p3 >}
L2 = { < p5, p6 >,< p6, p7 >}
L3 = { < p9, p10 >,< p10, p11 >}
L4 = { < p3, p4 >,< p4, p5 >}
L5 = { < p7, p8 >,< p8, p9 >}
L6 = { < p11, p12 >}

In general, given Euclidean transformations ω1, . . . , ωm−1 composed of transla-
tions and rotations, a set L representing a linear line pattern, and each set Li

representing a linear line pattern, the following set represents a linear line pattern
that can be analyzed as having the alternation structure:

L ∪
m−1⋃

i=1

ωi(L) ∪
m⋃

i=1

Li

It is important to note that not all line patterns that can be described in this way
are linear line patterns having the alternation structure. But, all linear line patterns
that have the alternation structure can be described in this way.
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4.5. Composition Structure
Line patterns for which there is no regularity of the above kinds among their

parts are assumed to have a composition structure. The composition structure
corresponds to the concatenation structure of the original and modified versions
of SIT. For example, the visual pattern illustrated in Figure 12 has a composition
structure. Of course, the parts of this line pattern have regular structures, but
the pattern as a whole does not. Every line pattern can be described as having a
composition structure.

FIG. 12. An example of a line pattern which should be described as having the composition
structure.

In general, if the sets L1, . . . , Ln represent line patterns, the following set repre-
sents a line pattern that can be analyzed as having the composition structure:

n⋃

i=1

Li

4.6. LLP : A Language for Gestalts of Two-dimensional Line Patterns
In this section, the above considerations about regularities of two-dimensional

line patterns are embodied in a coding language whose expressions represent the
Gestalts of two-dimensional line patterns. This coding language, called LLP (Lan-
guage for Gestalts of Line Patterns), is defined in terms of a set of position pairs
Aposp, a set Ω ⊂ Atrans of Euclidean transformations composed of translations and
rotations, a set Ψ ⊂ Atrans of Euclidean reflection transformations, and a set of
operator names that specify structural regularities. The set Ω is defined to cap-
ture regularities of position pairs for iteration structures and the set Ψ is defined
to capture regularities of position pairs for symmetry structures. Note that we
assume constants denoting all relevant Euclidean transformations, just as SIT as-
sumes constants denoting all relevant lengths and angles. I.e., we do not introduce
formal notation for describing Euclidean transformations in terms of a finite set of
primitives; for the purpose of the current paper, such details are irrelevant.

Definition 4.3. [Syntax of LLP] Let Aposp be the set of position pairs, Atrans

be the set of Euclidean transformations, Ω ⊂ Atrans is the set of transformations
composed of translations and rotations, and Ψ ⊂ Atrans is the set of reflection
transformations. Let also Iter, Sym, Alt, Comp, and Chunk be operator names
corresponding to iteration, symmetry, alternation, composition and chunk, respec-
tively. The LLP expressions are defined as follows:

1. Aposp ⊂ LLP,
2. If t, t1, . . . , tn ∈ LLP, m ∈ N, ω, ω1, . . . , ωn−1 ∈ Ω, and ψ ∈ Ψ, then

- Iter(t, ω, m) ∈ LLP,
- Sym(t, ψ) ∈ LLP,
- Alt(t, t1, . . . , tn, ω1, . . . , ωn−1) ∈ LLP,
- Chunk(t) ∈ LLP,
- Comp(t1, . . . , tn) ∈ LLP.
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The syntax of LLP expressions indicates how a line pattern is perceived in
terms of its constituent line patterns. The LLP expressions denote two-dimensional
representations of line patterns in D (see definition 4.1). The semantics of the LLP
expressions can be recursively defined as follows.

Definition 4.4. [Semantics of LLP] Let Aposp be a set of position pairs, Atrans

be a set of Euclidean transformations, and D be the set of two-dimensional rep-
resentations of line patterns over Aposp as in definition 4.1. Then, the semantic
function |[·]|, which maps LLP expressions to representations of two-dimensional
line patterns in D, is defined as follows:

1. if t ∈ Aposp ∪Atrans, then |[t]| = t,
2. if t, ti ∈ LLP for 1 ≤ i ≤ n, m ∈ N, ω, ω1, . . . , ωn−1 ∈ Ω, and ψ ∈ Ψ, then

- |[Iter(t, ω,m)]| = ⋃m−1
i=0 |[ωi]|( |[t]| ),

- |[Sym(t, ψ)]| = |[t]| ⋃ |[ψ]|( |[t]| ),
- |[Alt(t, t1, . . . , tn, ω1, . . . , ωn−1)]| = |[t]| ∪⋃n−1

i=1 |[ωi]|( |[t]| ) ∪⋃n
i=1 |[ti]|,

- |[Chunk(t)]| = chk(|[t]|),
- |[Comp(t1, . . . , tn)]| = ⋃n

i=1 |[ti]|.

As we have noticed, the application of a reflection transformation to a chunked
line pattern is not trivial. In fact, the spatial relations between chunked line seg-
ments are invariant under the reflection transformation. In order to preserve the
spatial relations under the reflection transformation, we define the application of
the reflection transformation to a chunked line pattern as a double reflection trans-
formation: the chunked line pattern is reflected with respect to the actual reflection
axis and, subsequently, the resulting chunked line pattern is reflected with respect
to a reflection axis which is parallel to the actual reflection axis and goes through
the center of chunked line pattern. The second reflection axis will be called internal.
This double reflection transformation guarantees that the spatial relations between
the chunked line segments will be preserved. It is illustrated in Figure 13.

FIG. 13. The process of reflecting patterns containing chunked subpatterns. Chunked
subpatterns are first reflected according to the actual reflection axis R and then according to their
internal reflection axis S.

In Figure 13-A, the chunked line pattern consists of two L-shaped line patterns.
This chunked pattern is reflected in Figure 13-B according to the actual reflection
axis R. Finally, in Figure 13-C the reflected chunked pattern is reflected again
according to its internal reflection axis S. In general, the application of transfor-
mations to chunked patterns can be defined as follows:

Definition 4.5. Let Mid-reflect(|[ψ]|, |[t]|) generate a reflection transformation
that reflects the line pattern |[t]| according to its internal reflection axis, i.e. a re-
flection axis which is parallel to the axis used by the reflection transformation |[ψ]|,
and goes through the center of |[t]|. Let also ψ and ω represent respectively a re-
flection transformation and a transformation composed of translation and rotation.
Then, the application of transformations to chk(|[t]|) is defined as:

- |[ψ]|( chk(|[t]|)) = chk(|[ψ]|(Mid- reflect(|[ψ]|, |[t]|)(|[t]|)))
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- |[ω]|(chk(|[t]|)) = chk(|[ω]|(|[t]|)).

In the first clause the line pattern chk(|[t]|), which is considered as a chunk,
is reflected twice. This results in a visual pattern that is similar to a translation
of chk(|[t]|). This is exactly what we wished to achieve with the reflection of the
chunked patterns.

Finally, for a transformation τ the expression |[τ ]|(|[t]| ∪ |[t′]|) obeys the distri-
bution law, i.e.

|[τ ]|(|[t]| ∪ |[t′]|) = |[τ ]|(|[t]|) ∪ |[τ ]|(|[t′]|)

4.7. An Example of a LLP Expression and its Denotation
As an example of a line pattern and its corresponding LLP expressions consider

the two-dimensional line pattern in Figure 14. The perceived structure of this
pattern can be described as consisting of two clusters: two squares and one diamond.
The following is a LLP expression that reflects this Gestalt of the line pattern.

Comp(Iter(Iter(< p1, p2 >,ωr, 4), ωt, 2), Sym(Sym(< p4, p6 >,ψv), ψh))

In this expression, ωr is a 90-degree rotation transformation with respect to the
center of the left square, ωt is a horizontal translation transformation from position
p1 to p7, ψv and ψh are the vertical and horizontal reflection transformations with
respect to the reflection axes along positions p5 − p6 and p4 − p7, respectively.

FIG. 14. A visual pattern perceived as consisting of two squares and one diamond.

|[Comp(Iter(Iter(< p1, p2 >,ωr, 4), ωt, 2), Sym(Sym(< p4, p6 >,ψv), ψh))]| =

|[Iter(Iter(< p1, p2 >,ωr, 4), ωt, 2)]| ⋃ |[Sym(Sym(< p4, p6 >, ψv), ψh)]| =
⋃1

i=0 |[ωi
t]|(|[Iter(< p1, p2 >,ωr, 4)]|)⋃ |[Sym(< p4, p6 >,ψv)]| ⋃ |[ψh]|(|[Sym(< p4, p6 >,ψv)]|) =

⋃1
i=0 |[ωi

t]|(
⋃3

j=0 |[ωj
r ]|(|[< p1, p2 >]|))⋃ |[< p4, p6 >]| ⋃ |[ψv]|(|[< p4, p6 >]|)⋃ |[ψh]|((|[< p4, p6 >]|) ⋃ |[ψv]|(|[< p4, p6 >]|)) =

⋃1
i=0 |[ωi

t]|({|[ω0
r ]|(|[< p1, p2 >]|), |[ω1

r ]|(|[< p1, p2 >]|),
|[ω2

r ]|(|[< p1, p2 >]|), |[ω3
r ]|(|[< p1, p2 >]|)})⋃ |[< p4, p6 >]| ⋃ |[ψv]|(|[< p4, p6 >]|)⋃ |[ψh]|(|[< p4, p6 >]|) ⋃ |[ψh]|(|[ψv]|(|[< p4, p6 >]|)).

4.8. The Information Load of LLP Expressions
A line pattern may have several Gestalts each of which is represented by a LLP

expression. In order to disambiguate the Gestalts of a line pattern and select
its perceived structure, we may follow the Gestalt disambiguation idea of SIT by
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proposing a complexity measure for LLP expressions. However, the definition of
such a measure must be supported by empirical research which is outside the scope
of this paper. Nevertheless, since the class of linear line patterns is a subclass of line
patterns and because SIT provides an empirically supported definition of complexity
measure for linear line patterns (i.e. the information load), we may consider the
subclass of LLP expressions that denote linear line patterns and reformulate the
empirically supported definition of information load, which is provided by SIT, for
this class of LLP expressions.

Definition 4.6. Let Aposp be the set of position pairs, Atrans be the set of
Euclidean transformations, t, ti ∈ LLP for 1 ≤ i ≤ n, ψ ∈ Ψ ⊂ Atrans, and
ω, ω1, . . . , ωn−1 ∈ Ω ⊂ Atrans. The information load I llp of LLP expressions that
denote linear line patterns can be recursively defined as follows:

• I llp(t) = 1 for t ∈ Aposp ∪Atrans

• I llp( Iter(t, ω, m) ) = I llp(t) + I llp(ω) + 1
• I llp( Sym(t, ψ) ) = I llp(t) + I llp(ψ)
• I llp( Alt(t, t1, . . . , tn, ω1, . . . , ωn−1) ) = I llp(t)+

∑n
i=1 I llp(ti)+

∑n−1
i=1 I llp(ωi)+n

• I llp( Chunk(t) ) = I llp(t) if t contains only one element from Aposp ∪Atrans;
= I llp(t) + 1 otherwise

• I llp( Comp(t1, . . . , tn) ) =
∑n

i=1 I llp(ti) + n− 1.

Empirical experimentations with the class of connected line patterns or even
with the more general class of unconnected line patterns should establish a reliable
definition of complexity measure that can be used for this representation system.
In the following, we write Ellp(s) to refer to the set of LLP expressions that denote
a line pattern s in D, i.e. Ellp(s) = {e ∈ LLP | |[e|] = s}. The subset of Ellp(s)
consisting of elements with minimum complexity value according to definition 4.6
is denoted by Perceivedllp(s), i.e.

Perceivedllp(s) = {e ∈ Ellp(s) | ∀e′ ∈ Ellp(s) I llp(e) ≤ I llp(e′)}

The set Perceivedllp(s) is called the LLP-predicted structures of line pattern s.
We show here that the SIT-predicted structures of a linear line pattern with a
two-dimensional code s are represented by the expressions in Perceivedllp(s). The
proof is based on equivalent LSP and LLP expressions.

Definition 4.7. A LSP expression tlsp and a LLP expression tllp are equiva-
lent, written as tlsp ∼ tlsp, if and only if they denote the same linear line pattern,
induce the same constituent structure (hierarchical clustering of the pattern), and
have the same information load.

The proof is constructed inductively on the basis of equivalence between LSP
and LLP expressions and a strict translation of line segments as position pairs and
of angles between them as Euclidean transformations.

Theorem 4.1. For any linear line pattern L with two-dimensional represen-
tation s, the SIT-predicted structures of L are represented by expressions from
Perceivedllp(s).



28 MEHDI DASTANI AND REMKO SCHA

Proof. Theorem 3.1 states that the SIT-predicted structures of a linear line
pattern with primitive code s are represented by expressions in Perceivedlsp(s).
Let slsp ∼ sllp, tlsp ∼ tllp, and tlsp

i ∼ tllpi for 1 ≤ i ≤ n be equivalent expressions
denoting linear line patterns S, T and Ti, having the information loads ks, kt and
kti , respectively. Moreover, let τ ∈ Atrans be a Euclidean transformation, and
y, yi, y

′
i ∈ Aang for 1 ≤ i ≤ n be angles between line segments. The proof is based on

a correspondence between LSP and LLP operators. For each pair of corresponding
operators we show that they denote the same linear line pattern, induce the same
constituent structure (have the same number of arguments), and result in the same
information load when they are applied to equivalent expressions. This implies that
Perceivedsit(s) and Perceivedlsp(s) represent perceptual structures that pairwise
have the same constituent structure and have the same information load.

Iteration operator: A linear line pattern L with iteration structure has a prim-
itive code of the form: Xy · · · yX, where X is the primitive code of a line pattern T

and y is the angle between subsequent occurrences of T . As argued in section 4.1,
the linear line pattern L can be analyzed in terms of the two-dimensional represen-
tation of T and a Euclidean transformation, composed of a translation (possibly a
zero-distance translation) and a rotation (possibly a zero-degree rotation) with re-
spect to a rotation point. According to definitions 3.2 and 4.4, there are expressions
Iter(tlsp, y, m) ∈ LSP and Iter(tllp, τ, m) ∈ LLP which denote representations of
L. Following definitions 3.3 and 4.6, the information load of both expressions is
kt + 2. Finally, these expressions induce the same constituent structure since it-
eration operators in both expressions have one pattern as an argument and the
arguments are equivalent expressions.

Symmetry operators: We distinguish two cases: symmetrical linear line pat-
terns with or without pivot element. A linear line pattern L with the symmetry
structure without pivot element has a primitive code of the form: XyX−1, where
X is the primitive code of linear line pattern T , X−1 is the primitive code of the
reflection of T , and y is the angle between them. As argued in section 4.2, the lin-
ear line pattern L can be analyzed in terms of the two-dimensional representation
of T and a Euclidean reflection transformation with respect to the reflection axis
between T and its reflection. According to definitions 3.2 and 4.4, there are expres-
sions Syme(tlsp, y) ∈ LSP and Sym(tllp, τ) ∈ LLP which denote representations
of L. Following definitions 3.3 and 4.6, the information load of both expressions
is kt + 1. These expressions induce the same constituent structure since symmetry
operators in both expressions have one pattern as an argument and the arguments
are equivalent expressions.

A linear line pattern L with the symmetry structure with pivot element has a
primitive code of the form: XyX ′y′X−1, where X and X ′ are the primitive codes
of linear line patterns T and S, respectively. The linear line pattern L can be
analyzed as a two-dimensional composition of two subpatterns: the symmetrical
part and the pivot element. According to definitions 3.2 and 4.4 there are ex-
pressions Symo(tlsp, slsp, y, y′) ∈ LSP and Comp(Sym(tllp, τ), sllp) ∈ LLP which
denote representations of L. Following definitions 3.3 and 4.6, the information load
of both expressions is kt + ks + 2. These expressions induce the same constituent
structure since they contain two equivalent expressions as arguments.
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Alternation operators: A linear line pattern L with the right-alternation
structure has a primitive code of the form: Xy1X1y

′
1X · · ·XynXn, where X and

Xi are the primitive codes of linear line patterns T and Ti, respectively. As ar-
gued in section 4.4, the linear line pattern L can be analyzed in terms of the two-
dimensional representations of T, Ti, and Euclidean transformations τ1, . . . , τn−1,
each composed of a translation (possibly a zero-distance translation) and a ro-
tation (possibly a zero-degree rotation) with respect to a rotation point. Ac-
cording to definitions 3.2 and 4.4 Altr(tlsp, tlsp

1 , . . . , tlsp
n , y1, . . . , yn, y′1, . . . , y

′
n−1) ∈

LSP and Alt(tllp, tllp1 , . . . , tllpn , τ1, . . . , τn−1) ∈ LLP denote the representations of
L. Following definitions 3.3 and 4.6, the information load of both expressions is
kt +

∑n
i=1 kti + 2n − 1. These expressions induce the same constituent structure

since they contain n + 1 equivalent expressions as arguments. The same can be
shown for the left alternation structures.

Chunk operator: According to definitions 3.2 and 4.4, there are expressions
Chunk(tlsp) ∈ LSP and Chunk(tllp) ∈ LLP which denote the representations of
the same linear line pattern. Following definitions 3.3 and 4.6, the information load
of both expressions is kt if tlsp and tllp contain one primitive element, and kt + 1
otherwise. Finally, these expressions induce the same constituent structure since in
these expressions the arguments are equivalent expressions.

Concatenation operator: A linear line pattern L with the concatenation struc-
ture has a primitive code of the form: X1y1 . . . yn−1Xn, where Xi is the primitive
code of linear line patterns Ti for 1 ≤ i ≤ n. As argued in section 4.5, the linear
line pattern L can be analyzed in terms of the two-dimensional representations of
T1, . . . , Tn. Definitions 3.2 and 4.4 imply that Con(tlsp

1 , y1, . . . , yn−1, t
lsp
n ) ∈ LSP

and Comp(tllp1 , . . . , tllpn ) ∈ LLP denote representations of L. Following definitions
3.3 and 4.6, the information load of both expressions is

∑n
i=1 kti + n− 1. Finally,

these two expressions induce the same constituent structure since they have n pat-

tern arguments, and the arguments are pairwise equivalent.

The following theorem assumes the uniqueness claim and states that under this
assumption if a linear line pattern is not ambiguous, then there is a unique LLP
expression with minimum complexity value that denotes the linear line pattern and
vice versa.

Theorem 4.2. Under the uniqueness claim assumption and for a linear line
pattern L with two-dimensional code s :

|Perceivedllp(s)| = 1 ⇔ L is not ambiguous

Proof. Theorem 3.1 states that the SIT-predicted structures of a linear line pat-
tern with primitive code s′ are represented by expressions in Perceivedlsp(s′) and
theorem 4.1 states that the SIT-predicted structures of the linear line pattern with
its two-dimensional code s are represented by expressions in Perceivedllp(s). This
implies that |Perceivedlsp(s′)| = |Perceivedllp(s)| for any line pattern L with primi-
tive code s′ and two-dimensional code s. Theorem 3.2 states that any linear line pat-
tern L with primitive code s′ is not ambiguous if and only if |Perceivedlsp(s′)| = 1.
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This concludes that any linear line pattern with two-dimensional code s is not am-

biguous if and only if |Perceivedllp(s)| = 1.

5. CONCLUSION AND FUTURE RESEARCH

We are far from a precise all-encompassing model of human visual perception.
Any model must either be limited to a small subset of phenomena or a specific
mechanism, or it must sacrifice preciseness. Or it has to do what we have done
here: address a very stylized caricature of the actual phenomena. In choosing for
the ‘caricature’ approach, we have been inspired by the competence/performance-
distinction in linguistics, which is completely artificial but which has been very
fruitful.

In this paper, we have developed two formal languages each of which represents a
certain class of Gestalts for a certain class of perceptual patterns. The first language
is designed for linear line patterns and covers those Gestalts that can be described
in terms of regularities of line attributes such as lengths and relative angles. The
second language is designed for the larger class of line patterns and covers Gestalts
that can be described in terms of translations, rotations, and reflections of the
constituent line segments. It should be emphasized that the proposed languages
cannot represent Gestalts that depend on the proximity effect or on other visual
attributes such as color, texture and thickness. These limitations will be addressed
in future research.

The approach presented here does not account for proximity-based Gestalts. The
proximity-based Gestalt of a pattern depends on relative distances between consti-
tutive pattern elements: relatively close elements tend to be perceptually grouped.
SIT is only concerned with regularity-based Gestalts and does not account for the
interaction between proximity and regularity. Proximity-based Gestalts differ from
regularity-based Gestalts since they cannot be selected by means of information
complexity. The information complexity of the proximity-based Gestalt of a pat-
tern can be equal to the information complexity of a regularity-based Gestalt which
describes the pattern as having a random grouping structure. Thus, it may be the
case that the proximity-based Gestalt of a pattern is preferred to a regularity-based
Gestalt that has a lower information complexity. For a detailed discussion on the
interaction between proximity and regularity see (Dastani, 1998).

In this paper, we have considered only those Gestalts that are based on regu-
larity of spatial relations among line segments. The proposed LLP language can
be extended to capture the Gestalt of visual patterns which are based on regu-
larity among values of different visual and spatial attributes such as color, size,
and texture (Dastani, 1998). For such extensions primitive visual elements can be
defined as n-tuples of attribute values, instead of tuples of position values, and
regularity among primitive visual elements can be captured in terms of n-tuples of
transformations that can be applied to visual elements.
LLP is designed for the general class of line patterns. For linear line patterns we

have reformulated the empirically supported information load, which is provided
by SIT, and shown that it can be applied to select the perceived regularity-based
Gestalts of linear line patterns represented by LLP expressions. The plausibility
of the claim that this reformulation of information load can also be applied to the
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class of linear line patterns is based on empirical experimentation, reported by SIT,
with line patterns that can be encoded as strings. Nevertheless, we believe that this
reformulation of the information load needs to be verified by future experimentation.
A possible research direction would therefore be to set up experiments to verify the
empirical validity of the proposed information load for connected line patterns and
perhaps to establish a new empirically supported information load for the general
class of line patterns.

It is clear that we have not been concerned with the experimental assessment of
the predictions of our models. Again, linguistics has served as a role model here:
for the time being, accounting for rather obvious uncontroversial intuitions that
the researcher may have about his own perception, has constituted enough of a
challenge. To the extent that we have come up with notions that have some initial
plausibility, it would be desirable to complement this work with more systematic
experimentation.

It should also be noted that in the system we described, two-dimensional pat-
terns are analyzed in terms of two-dimensional regularities. But humans tend to
project three-dimensional interpretations on their input patterns. Several phenom-
ena which are related to this tendency are therefore ignored by the current version.
Moreover, we have described Gestalts as being determined solely by regularity, ig-
noring the role of recognizing previously experienced patterns. It is clear that this
must be factored in. This may be done by interpreting our complexity measure
in an information-theoretic fashion: recurring patterns receive a lower complexity
value because they are ‘expected’. Finally, analyzing Gestalts as static codes is only
a preliminary step in the direction of a cognitively realistic description. A Gestalt
is not characterized by one code, but by a stable group of transformations which
map codes onto alternative but compatible codes.
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A

CB
FIG. 1. Visual pattern A has two potential structures B and C. Structure B is perceptually

preferred.
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FIG. 2. The proximity factor, rather than the similarity factor, dominates perceptual
grouping.
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FIG. 3. Encoding line patterns as strings.
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Information Load(Final Code of C)=8

FIG. 4. Two possible encodings of one line pattern.
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FIG. 5. Examples of linear line patterns.
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FIG. 6. The regularity among alternating elements is not perceived.
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FIG. 7. An example of a connected line pattern.
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FIG. 8. Position-based iteration structure.
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FIG. 9. A visual pattern with symmetry structure.
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FIG. 10. The spatial relation between chunked line segments is preserved in the symmetrical
halves.
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FIG. 11. An example of a linear line pattern which has alternation structure.
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p1
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p3

p4 p5

p6
FIG. 12. An example of a line pattern which should be described as having the composition

structure.
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A B C

S R SRR

FIG. 13. The process of reflecting patterns containing chunked subpatterns. Chunked
subpatterns are first reflected according to the actual reflection axis R and then according to their
internal reflection axis S.
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FIG. 14. A visual pattern perceived as consisting of two squares and one diamond.


